{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2020,4,12]],"date-time":"2020-04-12T03:48:29Z","timestamp":1586663309488},"publisher-location":"Berlin, Heidelberg","reference-count":29,"publisher":"Springer Berlin Heidelberg","isbn-type":[{"value":"9783540415978","type":"print"},{"value":"9783540445654","type":"electronic"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2000]]},"DOI":"10.1007\/3-540-44565-x_2","type":"book-chapter","created":{"date-parts":[[2007,8,11]],"date-time":"2007-08-11T09:48:14Z","timestamp":1186825694000},"page":"11-34","source":"Crossref","is-referenced-by-count":6,"title":["Sequence Learning via Bayesian Clustering by Dynamics"],"prefix":"10.1007","author":[{"given":"Paola","family":"Sebastiani","sequence":"first","affiliation":[]},{"given":"Marco","family":"Ramoni","sequence":"additional","affiliation":[]},{"given":"Paul","family":"Cohen","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2001,12,7]]},"reference":[{"key":"2_CR1","doi-asserted-by":"publisher","first-page":"803","DOI":"10.2307\/2532201","volume":"49","author":"J. D. Banfield","year":"1993","unstructured":"Banfield, J. D., & Raftery, A. E. (1993). Model-based gaussian and non-gaussian clustering. Biometrics, 49, 803\u2013821.","journal-title":"Biometrics"},{"key":"2_CR2","author":"Y. M. M. Bishop","year":"1975","unstructured":"Bishop, Y. M. M., Fienberg, S. E., & Holland, P. W. (1975). Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA.","volume-title":"Discrete Multivariate Analysis: Theory and Practice"},{"key":"2_CR3","author":"P. Cheeseman","first-page":"153","year":"1996","unstructured":"Cheeseman, P., & Stutz, J. (1996). Bayesian classification (AutoClass): Theory and results. In Advances in Knowledge Discovery and Data Mining, pp. 153\u2013180. MIT Press, Cambridge, MA.","volume-title":"Advances in Knowledge Discovery and Data Mining"},{"key":"2_CR4","first-page":"309","volume":"9","author":"G. F. Cooper","year":"1992","unstructured":"Cooper, G. F., & Herskovitz, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309\u2013347.","journal-title":"Machine Learning"},{"key":"2_CR5","author":"R. G. Cowell","year":"1999","unstructured":"Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic Networks and Expert Systems. Springer, New York, NY.","volume-title":"Probabilistic Networks and Expert Systems"},{"key":"2_CR6","doi-asserted-by":"publisher","first-page":"1272","DOI":"10.1214\/aos\/1176349260","volume":"21","author":"A. P. Dawid","year":"1993","unstructured":"Dawid, A. P., & Lauritzen, S. L. (1993). Hyper Markov laws in the statistical analysis of decomposable graphical models. Annals of Statistics, 21, 1272\u20131317. Correction ibidem, (1995), 23, 1864.","journal-title":"Annals of Statistics"},{"key":"2_CR7","author":"L. Firoiu","first-page":"106","year":"1999","unstructured":"Firoiu, L., & Cohen, P. (1999). Abstracting from robot sensor data using hidden Markov models. In Proceedings of the Sixteenth International Conference on Machine Learning (ICML-99), pp. 106\u2013114. Morgan Kaufmann, San Mateo, CA.","volume-title":"Proceedings of the Sixteenth International Conference on Machine Learning (ICML-99)"},{"key":"2_CR8","author":"L. Firoiu","first-page":"350","year":"1998","unstructured":"Firoiu, L., Oates, T., & Cohen, P. (1998). Learning regular languages from positive evidence. In Proceedings of the Twentieth Annual Meeting of the Cognitive Science Society, pp. 350\u2013355. Lawrence Erlbaum, Mahwah, NJ.","volume-title":"Proceedings of the Twentieth Annual Meeting of the Cognitive Science Society"},{"key":"2_CR9","author":"D. Fisher","year":"2000","unstructured":"Fisher, D. (2000). Conceptual clustering. In Klosgen, W., & Zytkow, J. (Eds.), Handbook of Data Mining and Knowledge Discovery. Oxford University Press, Oxford.","volume-title":"Handbook of Data Mining and Knowledge Discovery"},{"key":"2_CR10","unstructured":"Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering methods? Answers via model-based cluster analysis. Tech. rep. 329, Department of Statistics, University of Washington.","DOI":"10.1093\/comjnl\/41.8.578","doi-asserted-by":"crossref"},{"key":"2_CR11","author":"N. Friedman","first-page":"139","year":"1998","unstructured":"Friedman, N., Murphy, K., & Russell, S. (1998). Learning the structure of dynamic probabilistic networks. In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), pp. 139\u2013147. Morgan Kaufmann, San Mateo, CA.","volume-title":"Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98)"},{"key":"2_CR12","author":"I. J. Good","year":"1968","unstructured":"Good, I. J. (1968). The Estimation of Probability: An Essay on Modern Bayesian Methods. MIT Press, Cambridge, MA.","volume-title":"The Estimation of Probability: An Essay on Modern Bayesian Methods"},{"key":"2_CR13","unstructured":"Howe, A. E. (1992). Analyzing failure recovery to improve planner design. In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), pp. 387\u2013392. Morgan Kaufmann."},{"key":"2_CR14","doi-asserted-by":"crossref","first-page":"1233","DOI":"10.1101\/gr.8.12.1233","volume":"8","author":"P. Lio","year":"1998","unstructured":"Lio, P., & Goldman, N. (1998). Models of molecular evolution and phylogeny. Genome Research, 8, 1233\u20131244.","journal-title":"Genome Research"},{"key":"2_CR15","author":"I. L. MacDonald","year":"1997","unstructured":"MacDonald, I. L., & Zucchini, W. (1997). Hidden Markov and other Models for discrete-values Time Series. Chapman and Hall, London.","volume-title":"Hidden Markov and other Models for discrete-values Time Series"},{"key":"2_CR16","author":"T. Oates","first-page":"346","year":"1996","unstructured":"Oates, T., & Cohen, P. (1996). Searching for structure in multiple streams of data. In Proceedings of the Thirteenth International Conference on Machine Learning, pp. 346\u2013354. Morgan Kaufmann, San Mateo, CA.","volume-title":"Proceedings of the Thirteenth International Conference on Machine Learning"},{"key":"2_CR17","author":"T. Oates","year":"1999","unstructured":"Oates, T., Schmill, M., & Cohen, P. (1999). Identifying qualitatively different experiences: Experiments with a mobile robot. In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99). Morgan Kaufmann, San Mateo, CA.","volume-title":"Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence (IJCAI-99)"},{"issue":"2","key":"2_CR18","doi-asserted-by":"publisher","first-page":"257","DOI":"10.1109\/5.18626","volume":"77","author":"L. Rabiner","year":"1989","unstructured":"Rabiner, L. (1989). A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257\u2013285.","journal-title":"Proceedings of the IEEE"},{"key":"2_CR19","author":"M. Ramoni","first-page":"129","year":"1999","unstructured":"Ramoni, M., & Sebastiani, P. (1999). Bayesian methods. In Berthold, M., & Hand, D. J. (Eds.), Intelligent Data Analysis. An Introduction, pp. 129\u2013166. Springer, New York, NY.","volume-title":"Intelligent Data Analysis. An Introduction","DOI":"10.1007\/978-3-662-03969-4_4","doi-asserted-by":"crossref"},{"key":"2_CR20","author":"M. Ramoni","year":"2000","unstructured":"Ramoni, M., Sebastiani, P., & Cohen, P. (2000). Multivariate clustering by dynamics. In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000). Morgan Kaufmann, San Mateo, CA.","volume-title":"Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000)"},{"key":"2_CR21","unstructured":"Ramoni, M., Sebastiani, P., Cohen, P., Warwick, J., & Davis, J. (1999). Bayesian clustering by dynamics. Tech. rep. KMi-TR-78, Knowledge Media Institute, The Open University, Milton Keynes, United Kingdom."},{"key":"2_CR22","author":"G. Ridgeway","year":"1998","unstructured":"Ridgeway, G. (1998). Finite discrete markov process clustering. Tech. rep. MSR-TR-97-24, Microsoft Research, Redmond, WA.","series-title":"Tech. rep.","volume-title":"Finite discrete markov process clustering"},{"key":"2_CR23","author":"M. Rosenstein","first-page":"739","year":"1998","unstructured":"Rosenstein, M., & Cohen, P. (1998). Concepts from time series. In Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), pp. 739\u2013745. Morgan Kaufmann, San Mateo, CA.","volume-title":"Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98)"},{"key":"2_CR24","author":"S. M. Ross","year":"1996","unstructured":"Ross, S. M. (1996). Stochastic Processes. Wiley, New York, NY.","volume-title":"Stochastic Processes"},{"key":"2_CR25","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1023\/A:1007649326333","volume":"37","author":"L. K. Saul","year":"1999","unstructured":"Saul, L. K., & Jordan, M. I. (1999). Mixed memory Markov models: Decomposing complex stochastic processes as mixture of simpler ones. Machine Learning, 37, 75\u201387.","journal-title":"Machine Learning"},{"key":"2_CR26","author":"P. Sebastiani","first-page":"199","year":"1999","unstructured":"Sebastiani, P., Ramoni, M., Cohen, P., Warwick, J., & Davis, J. (1999). Discovering dynamics using Bayesian clustering. In Proceedings of the Third International Symposium on Intelligent Data Analysis (IDA-99), pp. 199\u2013209. Springer, New York, NY.","volume-title":"Proceedings of the Third International Symposium on Intelligent Data Analysis (IDA-99)"},{"key":"2_CR27","author":"R. Settimi","first-page":"472","year":"1998","unstructured":"Settimi, R., & Smith, J. Q. (1998). On the geometry of Bayesian graphical models with hidden variables. In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), pp. 472\u2013479. Morgan Kaufmann, San Mateo, CA.","volume-title":"Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98)"},{"key":"2_CR28","author":"P. Smyth","first-page":"72","year":"1997","unstructured":"Smyth, P. (1997). Clustering sequences with hidden Markov models. In Mozer, M., Jordan, M., & Petsche, T. (Eds.), Advances in Neural Information Precessing, pp. 72\u201393. MIT Press, Cambridge, MA.","volume-title":"Advances in Neural Information Precessing"},{"key":"2_CR29","author":"P. Smyth","first-page":"299","year":"1999","unstructured":"Smyth, P. (1999). Probabilistic model-based clustering of multivariate and sequential data. In Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics (Uncertainty 99), pp. 299\u2013304. Morgan Kaufmann, San Mateo, CA.","volume-title":"Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics (Uncertainty 99)"}],"container-title":["Sequence Learning","Lecture Notes in Computer Science"],"original-title":[],"link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/3-540-44565-X_2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,2,21]],"date-time":"2019-02-21T17:49:35Z","timestamp":1550771375000},"score":1.0,"subtitle":[],"short-title":[],"issued":{"date-parts":[[2000]]},"ISBN":["9783540415978","9783540445654"],"references-count":29,"URL":"http:\/\/dx.doi.org\/10.1007\/3-540-44565-x_2","relation":{"cites":[]},"ISSN":["0302-9743"],"issn-type":[{"value":"0302-9743","type":"print"}]}}