{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,9,22]],"date-time":"2022-09-22T02:37:32Z","timestamp":1663814252907},"reference-count":53,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2006,5,12]],"date-time":"2006-05-12T00:00:00Z","timestamp":1147392000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Data Min Knowl Disc"],"published-print":{"date-parts":[[2006,6,12]]},"DOI":"10.1007\/s10618-005-0028-0","type":"journal-article","created":{"date-parts":[[2006,5,11]],"date-time":"2006-05-11T15:17:23Z","timestamp":1147360643000},"page":"11-40","source":"Crossref","is-referenced-by-count":49,"title":["A Bit Level Representation for Time Series Data Mining with Shape Based Similarity"],"prefix":"10.1007","volume":"13","author":[{"given":"Anthony","family":"Bagnall","sequence":"first","affiliation":[]},{"given":"Chotirat \u201cAnn\u201d","family":"Ratanamahatana","sequence":"additional","affiliation":[]},{"given":"Eamonn","family":"Keogh","sequence":"additional","affiliation":[]},{"given":"Stefano","family":"Lonardi","sequence":"additional","affiliation":[]},{"given":"Gareth","family":"Janacek","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2006,5,12]]},"reference":[{"key":"28_CR1","doi-asserted-by":"crossref","unstructured":"Aach, J. and Church, G. 2001. Aligning gene expression time series with time warping algorithms. Bioinformatics, 17:495\u2013508.","DOI":"10.1093\/bioinformatics\/17.6.495"},{"key":"28_CR2","doi-asserted-by":"crossref","unstructured":"Agrawal, R., Faloutsos, C., and Swami, A.N. 1993. Efficient similarity search in sequence databases. In Proceedings of the 4th International Conference of Foundations of Data Organization and Algorithms (FODO).","DOI":"10.1007\/3-540-57301-1_5"},{"key":"28_CR3","doi-asserted-by":"crossref","unstructured":"Austin, J. 1996. Distributed associative memories for high speed symbolic reasoning. International Journal of Fuzzy Sets and Systems, 82:223\u2013233.","DOI":"10.1016\/0165-0114(95)00258-8"},{"key":"28_CR4","doi-asserted-by":"crossref","unstructured":"Austin, J., Davis, R., Fletcher, M., Jackson, T., Jessop, M., Liang, B., and Pasley, A. 2005. DAME: Searching large data sets within a grid-enabled engineering application. In Proceedings of the IEEE\u2014Special Issue on Grid Computing, 93(3):496\u2013509.","DOI":"10.1109\/JPROC.2004.842746"},{"key":"28_CR5","unstructured":"Austin, J. and Lees, K. 1998. A novel search engine based on correlation matrix memories. In Proceedings of the British Machine Vision Conference."},{"key":"28_CR6","unstructured":"Austin, J. and Zhou, P. 1998. A binary correlation matrix memory k-nn classifier with hardware implementation. In Proceedings of the British Machine Vision Conference."},{"key":"28_CR7","unstructured":"Bagnall, A.J. and Janacek, G.J. 2004. Clustering time series from ARMA models with clipped data. In Tenth International Conference on Knowledge Discovery in Data and Data Mining (ACM SIGKDD 2004), pp. 49\u201358."},{"key":"28_CR8","doi-asserted-by":"crossref","unstructured":"Bagnall, A.J. and Janacek, G.J. 2005. Clustering time series with clipped data. Machine Learning, 58(2):151\u2013178.","DOI":"10.1007\/s10994-005-5825-6"},{"key":"28_CR9","doi-asserted-by":"crossref","unstructured":"Bagnall, A.J., Janacek, G.J., and Powell, M. 2005. A likelihood ratio distance measure for the similarity between the fourier transform of time series. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2005).","DOI":"10.1007\/11430919_85"},{"key":"28_CR10","unstructured":"Basak, J., Sudarshan, A., Trivedi, D., and Santhanam, M.S. 2004. Weather data mining using independent component analysis. Journal of Machine Learning Research, 5:239\u2013253."},{"key":"28_CR11","unstructured":"Berndt, D. and Clifford, J. 1994. Using dynamic time warping to find patterns in time series. In Proceedings of AAAI-94 Workshop on Knowledge Discovery in Databases, pp. 229\u2013248."},{"key":"28_CR12","unstructured":"Bradley, J.V. 1968. Distribution-Free Statistical Tests. Prentice Hall."},{"key":"28_CR13","unstructured":"Cai, Y. and Ng, R.T. 2004. Indexing spatio-temporal trajectories with chebyshev polynomials. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 599\u2013610."},{"key":"28_CR14","unstructured":"Chan, K.P. and Fu, A.W. 1999. Efficient time series matching with wavelets. In Proceedings of the 15th IEEE Int\u2019l Conference on Data Engineering."},{"key":"28_CR15","doi-asserted-by":"crossref","unstructured":"Chiu, B., Keogh, E., and Lonardi, S. 2003. Probabilistic discovery of time series motifs. In Ninth International Conference on Knowledge Discovery in Data and Data Mining (ACM SIGKDD 2003).","DOI":"10.1145\/956804.956808"},{"key":"28_CR16","unstructured":"Faloutsos, C. Ranganathan, M., and Manolopoulos, Y. 1994. Fast subsequence matching in time-series databases. In Proc. ACM SIGMOD Conference, pp. 419\u2013429."},{"key":"28_CR17","doi-asserted-by":"crossref","unstructured":"Fowlkes, E. and Mallows, C. 1983. A method for comparing two hierarchical clusterings. Journal of the American Statistical Association, 78:553\u2013569.","DOI":"10.1080\/01621459.1983.10478008"},{"key":"28_CR18","doi-asserted-by":"crossref","unstructured":"Galan, R.F., Sachse, S., Galizia, C.G., and Herz, A.V.M. 2004. Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Computation, 16(1):999\u20131012.","DOI":"10.1162\/089976604773135078"},{"key":"28_CR19","unstructured":"Ganti, V., Gehrke, J., and Ramakrishnan, R. 1999. CACTUS-clustering categorical data using summaries. In Fifth International Conference on Knowledge Discovery in Data and Data Mining (ACM SIGKDD 1999), pp. 73\u201383."},{"key":"28_CR20","unstructured":"Ge, X. and Smyth, P. 2000. Deformable markov model templates for time-series pattern matching. In Sixth International Conference on Knowledge Discovery in Data and Data Mining (ACM SIGKDD 2000), pp. 81\u201390."},{"key":"28_CR21","doi-asserted-by":"crossref","unstructured":"Glaz, J. and Balakrishnan, N. 1999. Scan Statistics and Applications. Birkh\u00e4user.","DOI":"10.1007\/978-1-4612-1578-3"},{"key":"28_CR22","doi-asserted-by":"crossref","unstructured":"Glaz, J., Naus, J., and Wallenstein, S. 2001. Scan Statistics, Springer.","DOI":"10.1007\/978-1-4757-3460-7"},{"key":"28_CR23","doi-asserted-by":"crossref","unstructured":"Golomb, S.W. 1966. Run-length encodings. IEEE Trans. on Information Theory, 12(3):399\u2013401.","DOI":"10.1109\/TIT.1966.1053907"},{"key":"28_CR24","doi-asserted-by":"crossref","unstructured":"Hodge, V.J. and Austin, J. 2003. An evaluation of standard spell checking algorithms and a binary neural approach. IEEE Transactions on Knowledge and Data Engineering, 15(5).","DOI":"10.1109\/TKDE.2003.1232265"},{"key":"28_CR25","unstructured":"Huang, Z. 1998. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3)."},{"key":"28_CR26","doi-asserted-by":"crossref","unstructured":"Huffman, D.A. 1952. A method for the construction of minimum-redundancy codes. Inst. Radio Eng., 40:1098\u20131101.","DOI":"10.1109\/JRPROC.1952.273898"},{"key":"28_CR27","doi-asserted-by":"crossref","unstructured":"Kaufman, L. and Rousseeuw, P.J. 1990. Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons.","DOI":"10.1002\/9780470316801"},{"key":"28_CR28","doi-asserted-by":"crossref","unstructured":"Kedem, B. 1980. Estimation of the parameters in stationary autoregressive processes after hard limiting. Journal of the American Statistical Association, 75:146\u2013153.","DOI":"10.1080\/01621459.1980.10477445"},{"key":"28_CR29","unstructured":"Keogh, E. 2002. Exact indexing of dynamic time warping. In Proceedings of the 28th International Conference on Very Large Data Bases (VLDB), pp. 406\u2013417."},{"key":"28_CR30","unstructured":"Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. 2000. Locally adaptive dimensionality reduction for indexing large time series databases. In Proc. ACM SIGMOD Conference on Management of Data, pp. 151\u2013162."},{"key":"28_CR31","unstructured":"Keogh, E. and Folias, T. 2002. The UCR time series data mining archive. http:\/\/www.cs.ucr. edu\/eamonn\/TSDMA."},{"key":"28_CR32","doi-asserted-by":"crossref","unstructured":"Keogh, E. and Kasetty, S. 2003. On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Mining and Knowledge Discovery, 7(4).","DOI":"10.1023\/A:1024988512476"},{"key":"28_CR33","unstructured":"Keogh, E., Lonardi, S., and Ratanamahatana, C.A. 2004. Towards parameter-free data mining. In Tenth International Conference on Knowledge Discovery in Data and Data Mining (ACM SIGKDD 2004), pp. 206 \u2013 215."},{"key":"28_CR34","unstructured":"Keogh, E. and Pazzani, M. 2000. A simple dimensionality reduction technique for fast similarity search in large time series databases. In 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2000."},{"key":"28_CR35","doi-asserted-by":"crossref","unstructured":"Knuth, D.E. 1985. Dynamic huffman coding. J. of Algorithms, 6(2):163\u2013180.","DOI":"10.1016\/0196-6774(85)90036-7"},{"key":"28_CR36","doi-asserted-by":"crossref","unstructured":"Korn, F., Jagadish, H., and Faloutsos, C. 1997. Efficiently supporting ad hoc queries in large data sets of time sequences. In Proceedings of the ACM SIGMOD Int\u2019l Conference on Management of Data.","DOI":"10.1145\/253260.253332"},{"key":"28_CR37","unstructured":"Li, M., Chen, X., Li, X., Ma, B., and Vitanyi, P. 2003. The similarity metric. In Proceedings of the 14th annual ACM-SIAM Symposium on Discrete Algorithms, pp. 863\u2013872."},{"key":"28_CR38","doi-asserted-by":"crossref","unstructured":"Lin, J., Keogh, E., Lonardi, S., and Chiu, B. 2003. A symbolic representation of time series, with implications for streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.","DOI":"10.1145\/882085.882086"},{"key":"28_CR39","doi-asserted-by":"crossref","unstructured":"Milligan, G.W., Sokol, L.M., and Soon, S.C. 1983. The effect of cluster size, dimensionality and the number of clusters on recovery of true cluster structure. IEEE Trans. PAMI, 5(1):40\u201347.","DOI":"10.1109\/TPAMI.1983.4767342"},{"key":"28_CR40","unstructured":"Morchen, F. 2003. Time series feature extraction for data mining using DWT and DFT. Technical Report 3, Departement of Mathematics and Computer Science Philipps-University Marburg."},{"key":"28_CR41","unstructured":"Morinaka, Y., Yoshikawa, M., Amagasa, T., and Uemura, S. 2001. The L-index: An indexing structure for efficient subsequence matching in time sequence databases. In Proceedings of 5th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2001)."},{"key":"28_CR42","unstructured":"Ordonez, C. 2003. Clustering binary data streams with k-means. In Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining and knowledge discovery, pp. 12\u201319."},{"key":"28_CR43","doi-asserted-by":"crossref","unstructured":"Rand, W.M. 1971. Objective criterion for evaluation of clustering methods. Journal of American Statistical Association, 66:846\u2013851.","DOI":"10.1080\/01621459.1971.10482356"},{"key":"28_CR44","doi-asserted-by":"crossref","unstructured":"Ratanamahatana, C.A. and Keogh, E. 2005. Three myths about dynamic time warping data mining. In Proceedings of SIAM International Conference on Data Mining (SDM \u201905).","DOI":"10.1137\/1.9781611972757.50"},{"key":"28_CR45","doi-asserted-by":"crossref","unstructured":"Rayner, J.C. and Best, D.J. (eds.) 2001. A Contingency Table Approach to Non-parametric Testing. Chapman and Hall.","DOI":"10.1201\/9781420035957"},{"key":"28_CR46","doi-asserted-by":"crossref","unstructured":"Rice, S.O. 1944. Mathematical analysis of random noise. Bell Syst. Tech. J., 23:292\u2013332.","DOI":"10.1002\/j.1538-7305.1944.tb00874.x"},{"key":"28_CR47","unstructured":"Rissanen, J. and Langdon, G.G. 1979. Arithmetic coding. IBM J. of Res. and Dev., 23(2):149\u2013162."},{"key":"28_CR48","doi-asserted-by":"crossref","unstructured":"Schwarz, E.S. 1964. An optimum encoding with minimum longest code and total number of digits. Inf. and Control, 7:37\u201344.","DOI":"10.1016\/S0019-9958(64)90241-4"},{"key":"28_CR49","doi-asserted-by":"crossref","unstructured":"Vlachos, M., Yu, P., and Castelli, V. 2005. On periodicity detection and structural periodic similarity. In Proceedings of the Siam International conference on Data Mining (SDM 05).","DOI":"10.1137\/1.9781611972757.40"},{"key":"28_CR50","unstructured":"Weld, D.S. and de Kleer, J. (eds.) 1990. Readings in qualitative reasoning about physical systems. Morgan Kaufmann Publishers Inc.,"},{"key":"28_CR51","unstructured":"Xiong, Y. and Yeung, D.Y. 2002. Mixtures of ARMA models for model-based time series clustering. In IEEE International Conference on Data Mining (ICDM\u201902)."},{"key":"28_CR52","unstructured":"Yi, B.K. and Faloutsos, C. 2000. Fast time sequence indexing for arbitrary Lp norms. In Proceedings of the 26th International Conference on Very Large Data Bases (VLDB), pp. 385\u2013394."},{"key":"28_CR53","unstructured":"Zhu, Y. and Shasha, D. 2003. Warping indexes with envelope transforms for query by humming. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 181\u2013192."}],"container-title":["Data Mining and Knowledge Discovery"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-005-0028-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10618-005-0028-0\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10618-005-0028-0","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,5,30]],"date-time":"2019-05-30T15:29:38Z","timestamp":1559230178000},"score":1,"resource":{"primary":{"URL":"http:\/\/link.springer.com\/10.1007\/s10618-005-0028-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2006,5,12]]},"references-count":53,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2006,6,12]]}},"alternative-id":["28"],"URL":"http:\/\/dx.doi.org\/10.1007\/s10618-005-0028-0","relation":{},"ISSN":["1384-5810","1573-756X"],"issn-type":[{"value":"1384-5810","type":"print"},{"value":"1573-756X","type":"electronic"}],"subject":["Computer Networks and Communications","Computer Science Applications","Information Systems"],"published":{"date-parts":[[2006,5,12]]}}}