{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2021,9,30]],"date-time":"2021-09-30T05:10:43Z","timestamp":1632978643536},"reference-count":51,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2009,1,9]],"date-time":"2009-01-09T00:00:00Z","timestamp":1231459200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2009,4]]},"DOI":"10.1007\/s10994-008-5097-z","type":"journal-article","created":{"date-parts":[[2009,1,8]],"date-time":"2009-01-08T15:12:25Z","timestamp":1231427545000},"page":"129-165","source":"Crossref","is-referenced-by-count":36,"title":["An efficient algorithm for learning to rank from\u00a0preference graphs"],"prefix":"10.1007","volume":"75","author":[{"given":"Tapio","family":"Pahikkala","sequence":"first","affiliation":[]},{"given":"Evgeni","family":"Tsivtsivadze","sequence":"additional","affiliation":[]},{"given":"Antti","family":"Airola","sequence":"additional","affiliation":[]},{"given":"Jouni","family":"J\u00e4rvinen","sequence":"additional","affiliation":[]},{"given":"Jorma","family":"Boberg","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2009,1,9]]},"reference":[{"key":"5097_CR1","series-title":"ACM international conference proceeding series","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1145\/1143844.1143848","volume-title":"Proceedings of the 23rd international conference on machine learning","author":"S. Agarwal","year":"2006","unstructured":"Agarwal, S. (2006). Ranking on graph data. In W. W. Cohen & A. Moore (Eds.), ACM international conference proceeding series: Vol. 148. Proceedings of the 23rd international conference on machine learning (pp. 25\u201332). New York: ACM."},{"key":"5097_CR2","series-title":"Lecture notes in computer science","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1007\/11503415_3","volume-title":"Proceedings of the 18th annual conference on learning theory","author":"S. Agarwal","year":"2005","unstructured":"Agarwal, S., & Niyogi, P. (2005). Stability and generalization of bipartite ranking algorithms. In P. Auer & R.\u00a0Meir (Eds.), Lecture notes in computer science: Vol. 3559. Proceedings of the 18th annual conference on learning theory (pp. 32\u201347). Berlin: Springer."},{"issue":"7","key":"5097_CR3","doi-asserted-by":"crossref","first-page":"1145","DOI":"10.1016\/S0031-3203(96)00142-2","volume":"30","author":"A. P. Bradley","year":"1997","unstructured":"Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145\u20131159.","journal-title":"Pattern Recognition"},{"key":"5097_CR4","unstructured":"Brefeld, U., & Scheffer, T. (2005). AUC maximizing support vector learning. In N. Lachiche, C. Ferri, S. A. Macskassy, & A. Rakotomamonjy (Eds.), Proceedings of the 2nd workshop on ROC analysis in machine learning (ROCML\u201905)."},{"key":"5097_CR5","doi-asserted-by":"crossref","volume-title":"Combinatorial matrix theory","author":"R. A. Brualdi","year":"1991","unstructured":"Brualdi, R. A., & Ryser, H. J. (1991). Combinatorial matrix theory. Cambridge: Cambridge University Press.","DOI":"10.1017\/CBO9781107325708"},{"key":"5097_CR6","series-title":"Lecture notes in computer science","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/11503415_1","volume-title":"Proceedings of the 18th annual conference on learning theory","author":"S. Cl\u00e9men\u00e7on","year":"2005","unstructured":"Cl\u00e9men\u00e7on, S., Lugosi, G., & Vayatis, N. (2005). Ranking and scoring using empirical risk minimization. In P. Auer & R. Meir (Eds.), Lecture notes in computer science: Vol. 3559. Proceedings of the 18th annual conference on learning theory (pp. 1\u201315). Berlin: Springer."},{"key":"5097_CR7","series-title":"Lecture notes in computer science","first-page":"1","volume-title":"Proceedings of the 6th workshop on experimental algorithms","author":"C. Cortes","year":"2007","unstructured":"Cortes, C., Mohri, M., & Rastogi, A. (2007a). An alternative ranking problem for search engines. In C.\u00a0Demetrescu (Ed.), Lecture notes in computer science: Vol. 4525. Proceedings of the 6th workshop on experimental algorithms (pp. 1\u201321). Berlin: Springer."},{"key":"5097_CR8","series-title":"ACM international conference proceeding series","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1145\/1273496.1273518","volume-title":"Proceedings of the 24th annual international conference on machine learning","author":"C. Cortes","year":"2007","unstructured":"Cortes, C., Mohri, M., & Rastogi, A. (2007b). Magnitude-preserving ranking algorithms. In Z. Ghahramani (Ed.), ACM international conference proceeding series: Vol. 227. Proceedings of the 24th annual international conference on machine learning (pp. 169\u2013176). New York: ACM."},{"key":"5097_CR9","first-page":"933","volume":"4","author":"Y. Freund","year":"2003","unstructured":"Freund, Y., Iyer, R., Schapire, R. E., & Singer, Y. (2003). An efficient boosting algorithm for combining preferences. Journal Machine Learning Research, 4, 933\u2013969.","journal-title":"Journal Machine Learning Research"},{"issue":"1","key":"5097_CR10","first-page":"60","volume":"19","author":"J. F\u00fcrnkranz","year":"2005","unstructured":"F\u00fcrnkranz, J., & H\u00fcllermeier, E. (2005). Preference learning. K\u00fcnstliche Intelligenz, 19(1), 60\u201361.","journal-title":"K\u00fcnstliche Intelligenz"},{"issue":"1","key":"5097_CR11","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/B:MACH.0000008082.80494.e0","volume":"54","author":"T. V. Gestel","year":"2004","unstructured":"Gestel, T. V., Suykens, J. A. K., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., Moor, B. D., & Vandewalle, J. (2004). Benchmarking least squares support vector machine classifiers. Machine Learning, 54(1), 5\u201332.","journal-title":"Machine Learning"},{"issue":"2","key":"5097_CR12","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1023\/A:1011419012209","volume":"4","author":"K. Goldberg","year":"2001","unstructured":"Goldberg, K., Roeder, T., Gupta, D., & Perkins, C. (2001). Eigentaste: A constant time collaborative filtering algorithm. Information Retrieval, 4(2), 133\u2013151.","journal-title":"Information Retrieval"},{"key":"5097_CR13","series-title":"Lecture notes in computer science","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1007\/11503415_34","volume-title":"Proceedings of the 18th annual conference on learning theory","author":"P. Golland","year":"2005","unstructured":"Golland, P., Liang, F., Mukherjee, S., & Panchenko, D. (2005). Permutation tests for classification. In P.\u00a0Auer & R. Meir (Eds.), Lecture notes in computer science: Vol. 3559. Proceedings of the 18th annual conference on learning theory (pp. 501\u2013515). Berlin: Springer."},{"key":"5097_CR14","doi-asserted-by":"crossref","unstructured":"Herbrich, R., Graepel, T., & Obermayer, K. (1999). Support vector learning for ordinal regression. In Proceedings of the ninth international conference on artificial neural networks (pp. 97\u2013102). London, Institute of Electrical Engineers.","DOI":"10.1049\/cp:19991091"},{"key":"5097_CR15","doi-asserted-by":"crossref","volume-title":"Matrix analysis","author":"R. Horn","year":"1985","unstructured":"Horn, R., & Johnson, C. R. (1985). Matrix analysis. Cambridge: Cambridge University Press.","DOI":"10.1017\/CBO9780511810817"},{"issue":"3","key":"5097_CR16","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1109\/TKDE.2005.50","volume":"17","author":"J. Huang","year":"2005","unstructured":"Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering, 17(3), 299\u2013310.","journal-title":"IEEE Transactions on Knowledge and Data Engineering"},{"key":"5097_CR17","first-page":"133","volume-title":"Proceedings of the 8th ACM SIGKDD conference on knowledge discovery and data mining","author":"T. Joachims","year":"2002","unstructured":"Joachims, T. (2002). Optimizing search engines using clickthrough data. In D. Hand, D. Keim, & R. Ng (Eds.), Proceedings of the 8th ACM SIGKDD conference on knowledge discovery and data mining KDD\u201902 (pp. 133\u2013142). New York: ACM."},{"key":"5097_CR18","series-title":"ACM international conference proceeding series","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1145\/1102351.1102399","volume-title":"Proceedings of the 22nd international conference on machine learning","author":"T. Joachims","year":"2005","unstructured":"Joachims, T. (2005). A support vector method for multivariate performance measures. In L. D. Raedt & S.\u00a0Wrobel (Eds.), ACM international conference proceeding series: Vol. 119. Proceedings of the 22nd international conference on machine learning (pp. 377\u2013384). New York: ACM."},{"key":"5097_CR19","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1145\/1150402.1150429","volume-title":"Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining","author":"T. Joachims","year":"2006","unstructured":"Joachims, T. (2006). Training linear SVMs in linear time. In T. Eliassi-Rad, L. H. Ungar, M. Craven, & D. Gunopulos (Eds.), Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining KDD\u201906 (pp. 217\u2013226). New York: ACM."},{"issue":"1","key":"5097_CR20","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1109\/TIT.2007.911294","volume":"54","author":"R. Johnson","year":"2008","unstructured":"Johnson, R., & Zhang, T. (2008). Graph-based semi-supervised learning and spectral kernel design. IEEE Transactions on Information Theory, 54(1), 275\u2013288.","journal-title":"IEEE Transactions on Information Theory"},{"key":"5097_CR21","unstructured":"Liu, T.-Y., Xu, J., Qin, T., Xiong, W., & Li, H. (2007). LETOR: Benchmark dataset for research on learning to rank for information retrieval. In T. Joachims, H. Li, T.-Y. Liu, & C. Zhai (Eds.), SIGIR 2007 workshop on learning to rank for information retrieval (pp. 3\u201310)."},{"key":"5097_CR22","unstructured":"Pahikkala, T., Airola, A., Boberg, J., & Salakoski, T. (2008a). Exact and efficient leave-pair-out cross-validation for ranking RLS. In T. Honkela, M. P\u00f6ll\u00e4, M.-S. Paukkeri, & O. Simula (Eds.), Proceedings of the 2nd international and interdisciplinary conference on adaptive knowledge representation and reasoning (AKRR\u201908) (pp. 1\u20138). Helsinki University of Technology."},{"key":"5097_CR23","series-title":"Frontiers in artificial intelligence and applications","first-page":"12","volume-title":"Proceedings of the 10th Scandinavian conference on artificial intelligence","author":"T. Pahikkala","year":"2008","unstructured":"Pahikkala, T., Airola, A., Suominen, H., Boberg, J., & Salakoski, T. (2008b). Efficient AUC maximization with regularized least-squares. In A. Holst, P. Kreuger, & P. Funk (Eds.), Frontiers in artificial intelligence and applications: Vol. 173. Proceedings of the 10th Scandinavian conference on artificial intelligence SCAI, 2008 (pp. 12\u201319). Amsterdam: IOS Press."},{"key":"5097_CR24","unstructured":"Pahikkala, T., Boberg, J., & Salakoski, T. (2006a). Fast n-fold cross-validation for regularized least-squares. In T. Honkela, T. Raiko, J. Kortela, & H. Valpola (Eds.), Proceedings of the ninth Scandinavian conference on artificial intelligence, Espoo, Finland (pp. 83\u201390). Otamedia Oy."},{"key":"5097_CR25","unstructured":"Pahikkala, T., Suominen, H., Boberg, J., & Salakoski, T. (2007a). Transductive ranking via pairwise regularized least-squares. In P. Frasconi, K. Kersting, & K. Tsuda (Eds.), Workshop on mining and learning with graphs (pp. 175\u2013178)."},{"key":"5097_CR26","unstructured":"Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., & Salakoski, T. (2007b). Learning to rank with pairwise regularized least-squares. In T. Joachims, H. Li, T.-Y. Liu, C. Zhai (Eds.), SIGIR 2007 workshop on learning to rank for information retrieval (pp. 27\u201333)."},{"key":"5097_CR27","unstructured":"Pahikkala, T., Tsivtsivadze, E., Boberg, J., & Salakoski, T. (2006b). Graph kernels versus graph representations: a case study in parse ranking. In T. G\u00e4rtner, G. C. Garriga, & T. Meinl (Eds.), Proceedings of the ECML\/PKDD\u201906 workshop on mining and learning with graphs, Berlin, Germany (pp. 181\u2013188)."},{"key":"5097_CR28","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1186\/1471-2105-8-326","volume":"8","author":"B. J. Parker","year":"2007","unstructured":"Parker, B. J., Gunter, S., & Bedo, J. (2007). Stratification bias in low signal microarray studies. BMC Bioinformatics, 8, 326.","journal-title":"BMC Bioinformatics"},{"issue":"9","key":"5097_CR29","doi-asserted-by":"crossref","first-page":"1481","DOI":"10.1109\/5.58326","volume":"78","author":"T. Poggio","year":"1990","unstructured":"Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9), 1481\u20131497.","journal-title":"Proceedings of the IEEE"},{"key":"5097_CR30","first-page":"445","volume-title":"Proceedings of the fifteenth international conference on machine learning","author":"F. J. Provost","year":"1998","unstructured":"Provost, F. J., Fawcett, T., & Kohavi, R. (1998). The case against accuracy estimation for comparing induction algorithms. In J. Shavlik (Ed.), Proceedings of the fifteenth international conference on machine learning (pp. 445\u2013453). San Mateo: Morgan Kaufmann."},{"key":"5097_CR31","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1186\/1471-2105-8-50","volume":"8","author":"S. Pyysalo","year":"2007","unstructured":"Pyysalo, S., Ginter, F., Heimonen, J., Bj\u00f6rne, J., Boberg, J., J\u00e4rvinen, J., & Salakoski, T. (2007). BioInfer: A\u00a0corpus for information extraction in the biomedical domain. BMC Bioinformatics, 8, 50.","journal-title":"BMC Bioinformatics"},{"issue":"6","key":"5097_CR32","first-page":"430","volume":"75","author":"S. Pyysalo","year":"2006","unstructured":"Pyysalo, S., Ginter, F., Pahikkala, T., Boberg, J., J\u00e4rvinen, J., & Salakoski, T. (2006). Evaluation of two dependency parsers on biomedical corpus targeted at protein-protein interactions. Recent Advances in Natural Language Processing for Biomedical Applications, special issue of the International Journal of Medical Informatics, 75(6), 430\u2013442.","journal-title":"Recent Advances in Natural Language Processing for Biomedical Applications, special issue of the International Journal of Medical Informatics"},{"key":"5097_CR33","first-page":"1939","volume":"6","author":"J. Qui\u00f1onero-Candela","year":"2005","unstructured":"Qui\u00f1onero-Candela, J., & Rasmussen, C. E. (2005). A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6, 1939\u20131959.","journal-title":"Journal of Machine Learning Research"},{"key":"5097_CR34","first-page":"203","volume-title":"Large-scale kernel machines","author":"J. Qui\u00f1onero-Candela","year":"2007","unstructured":"Qui\u00f1onero-Candela, J., Rasmussen, C. E., & Williams, C. K. I. (2007). Approximation methods for Gaussian process regression. In L. Bottou, O. Chapelle, D. DeCoste, & J. Weston (Eds.), Large-scale kernel machines (pp. 203\u2013224). Cambridge: MIT Press."},{"key":"5097_CR35","unstructured":"Rakotomamonjy, A. (2004). Optimizing area under ROC curve with SVMs. In J. Hern\u00e1ndez-Orallo, C. Ferri, N. Lachiche, & P. A. Flach (Eds.), Proceedings of the 1st international workshop on ROC analysis in artificial intelligence (pp. 71\u201380)."},{"key":"5097_CR36","unstructured":"Rifkin, R. (2002). Everything old is new again: a fresh look at historical approaches in machine learning. Ph.D. thesis, Massachusetts Institute of Technology."},{"key":"5097_CR37","first-page":"101","volume":"5","author":"R. Rifkin","year":"2004","unstructured":"Rifkin, R., & Klautau, A. (2004). In defense of one-vs-all classification. Journal of Machine Learning Research, 5, 101\u2013141.","journal-title":"Journal of Machine Learning Research"},{"key":"5097_CR38","unstructured":"Rifkin, R., & Lippert, R. (2007a). Notes on regularized least squares (Technical Report MIT-CSAIL-TR-2007-025). Massachusetts Institute of Technology."},{"key":"5097_CR39","first-page":"441","volume":"8","author":"R. Rifkin","year":"2007","unstructured":"Rifkin, R., & Lippert, R. (2007b). Value regularization and Fenchel duality. Journal of Machine Learning Research, 8, 441\u2013479.","journal-title":"Journal of Machine Learning Research"},{"key":"5097_CR40","series-title":"NATO science series III: computer and system sciences","first-page":"131","volume-title":"Advances in learning theory: methods, model and applications","author":"R. Rifkin","year":"2003","unstructured":"Rifkin, R., Yeo, G., & Poggio, T. (2003). Regularized least-squares classification. In J. Suykens, G. Horvath, S. Basu, C. Micchelli, & J. Vandewalle (Eds.), NATO science series III: computer and system sciences: Vol. 190. Advances in learning theory: methods, model and applications (pp. 131\u2013154). Amsterdam: IOS Press. Chap. 7."},{"key":"5097_CR41","first-page":"416","volume-title":"Proceedings of the 14th annual conference on computational learning theory and 5th European conference on computational learning theory","author":"B. Sch\u00f6lkopf","year":"2001","unstructured":"Sch\u00f6lkopf, B., Herbrich, R., & Smola, A. J. (2001). A generalized representer theorem. In D. Helmbold & R. Williamson (Eds.), Proceedings of the 14th annual conference on computational learning theory and 5th European conference on computational learning theory (pp. 416\u2013426). Berlin: Springer."},{"issue":"5","key":"5097_CR42","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1109\/72.788641","volume":"10","author":"B. Sch\u00f6lkopf","year":"1999","unstructured":"Sch\u00f6lkopf, B., Mika, S., Burges, C., Knirsch, P., M\u00fcller, K.-R., R\u00e4tsch, G., & Smola, A. (1999). Input space versus feature space in kernel-based methods. IEEE Transactions On Neural Networks, 10(5), 1000\u20131017.","journal-title":"IEEE Transactions On Neural Networks"},{"key":"5097_CR43","unstructured":"Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain (Technical Report CMU-CS-94-125). Carnegie Mellon University, Pittsburgh, PA, USA."},{"key":"5097_CR44","unstructured":"Sleator, D. D., & Temperley, D. (1991). Parsing English with a link grammar (Technical Report CMU-CS-91-196). Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA."},{"key":"5097_CR45","first-page":"911","volume-title":"Proceedings of the seventeenth international conference on machine learning","author":"A. J. Smola","year":"2000","unstructured":"Smola, A. J., & Sch\u00f6lkopf, B. (2000). Sparse greedy matrix approximation for machine learning. In P. Langley (Ed.), Proceedings of the seventeenth international conference on machine learning (pp. 911\u2013918). San Mateo: Morgan Kaufmann."},{"key":"5097_CR46","first-page":"2443","volume":"8","author":"S. Sonnenburg","year":"2007","unstructured":"Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S., Bottou, L., Holmes, G., Lecun, Y., M\u00fcller, K.\u00a0R., Pereira, F., Rasmussen, C. E., R\u00e4tsch, G., Sch\u00f6lkopf, B., Smola, A., Vincent, P., Weston, J., & Williamson, R. (2007). The need for open source software in machine learning. Journal of Machine Learning Research, 8, 2443\u20132466.","journal-title":"Journal of Machine Learning Research"},{"issue":"3","key":"5097_CR47","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1023\/A:1018628609742","volume":"9","author":"J. A. K. Suykens","year":"1999","unstructured":"Suykens, J. A. K., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9(3), 293\u2013300.","journal-title":"Neural Processing Letters"},{"key":"5097_CR48","series-title":"Frontiers in artificial intelligence and applications","first-page":"76","volume-title":"Proceedings of the 10th Scandinavian conference on artificial intelligence","author":"E. Tsivtsivadze","year":"2008","unstructured":"Tsivtsivadze, E., Pahikkala, T., Airola, A., Boberg, J., & Salakoski, T. (2008). A sparse regularized least-squares preference learning algorithm. In A. Holst, P. Kreuger, & P. Funk (Eds.), Frontiers in artificial intelligence and applications: Vol. 173. Proceedings of the 10th Scandinavian conference on artificial intelligence SCAI, 2008 (pp. 76\u201383). Amsterdam: IOS Press."},{"key":"5097_CR49","series-title":"Lecture notes in computer science","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1007\/11552253_42","volume-title":"Proceedings of the 6th international symposium on intelligent data analysis","author":"E. Tsivtsivadze","year":"2005","unstructured":"Tsivtsivadze, E., Pahikkala, T., Pyysalo, S., Boberg, J., Myll\u00e4ri, A., & Salakoski, T. (2005). Regularized least-squares for parse ranking. In A. F. Famili, J. N. Kok, J. M. Pe\u00f1a, A. Siebes, & A. J. Feelders (Eds.), Lecture notes in computer science: Vol. 3646. Proceedings of the 6th international symposium on intelligent data analysis (pp. 464\u2013474). Berlin: Springer."},{"key":"5097_CR50","doi-asserted-by":"crossref","first-page":"80","DOI":"10.2307\/3001968","volume":"1","author":"F. Wilcoxon","year":"1945","unstructured":"Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics, 1, 80\u201383.","journal-title":"Biometrics"},{"key":"5097_CR51","first-page":"176","volume-title":"Proceedings of the 17th international conference on pattern recognition","author":"P. Zhang","year":"2004","unstructured":"Zhang, P., & Peng, J. (2004). SVM vs regularized least squares classification. In J. Kittler, M. Petrou, & M.\u00a0Nixon (Eds.), Proceedings of the 17th international conference on pattern recognition ICPR\u201904 (Vol. 1, pp. 176\u2013179). Los Alamitos: IEEE Computer Society."}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-008-5097-z.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-008-5097-z\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-008-5097-z","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,9,29]],"date-time":"2021-09-29T16:23:40Z","timestamp":1632932620000},"score":1,"subtitle":[],"short-title":[],"issued":{"date-parts":[[2009,1,9]]},"references-count":51,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2009,4]]}},"alternative-id":["5097"],"URL":"http:\/\/dx.doi.org\/10.1007\/s10994-008-5097-z","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":["Artificial Intelligence","Software"],"published":{"date-parts":[[2009,1,9]]}}}