{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2020,2,16]],"date-time":"2020-02-16T22:03:22Z","timestamp":1581890602058},"reference-count":111,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"URL":"http:\/\/www.springer.com\/tdm","start":{"date-parts":[[2011,9,5]],"date-time":"2011-09-05T00:00:00Z","timestamp":1315180800000},"delay-in-days":0,"content-version":"tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2012,1]]},"DOI":"10.1007\/s10994-011-5259-2","type":"journal-article","created":{"date-parts":[[2011,9,6]],"date-time":"2011-09-06T18:25:40Z","timestamp":1315333540000},"page":"3-23","source":"Crossref","is-referenced-by-count":55,"title":["ILP turns 20"],"prefix":"10.1007","volume":"86","author":[{"given":"Stephen","family":"Muggleton","sequence":"first","affiliation":[]},{"given":"Luc","family":"De Raedt","sequence":"additional","affiliation":[]},{"given":"David","family":"Poole","sequence":"additional","affiliation":[]},{"given":"Ivan","family":"Bratko","sequence":"additional","affiliation":[]},{"given":"Peter","family":"Flach","sequence":"additional","affiliation":[]},{"given":"Katsumi","family":"Inoue","sequence":"additional","affiliation":[]},{"given":"Ashwin","family":"Srinivasan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2011,9,5]]},"reference":[{"key":"5259_CR1","author":"M. Bain","first-page":"105","year":"1991","unstructured":"Bain, M., & Muggleton, S. H. (1991). Non-monotonic learning. In D. Michie (Ed.), Machine intelligence (Vol.\u00a012, pp. 105\u2013120). London: Oxford University Press.","volume-title":"Machine intelligence"},{"key":"5259_CR2","series-title":"LNAI","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1007\/3540635149_36","volume-title":"Proceedings of the seventh international workshop on inductive logic programming","author":"H. Blockeel","year":"1997","unstructured":"Blockeel, H., & De Raedt, L. (1997). Lookahead and discretisation in ILP. In N. Lavra\u010d & S. D\u017eeroski (Eds.), LNAI: Vol. 1297. Proceedings of the seventh international workshop on inductive logic programming (pp. 77\u201384). Berlin: Springer."},{"issue":"1","key":"5259_CR3","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1023\/A:1009867806624","volume":"3","author":"H. Blockeel","year":"1999","unstructured":"Blockeel, H., De Raedt, L., Jacobs, N., & Demoen, B. (1999). Scaling up inductive logic programming by learning from interpretations. Data Mining and Knowledge Discovery, 3(1), 59\u201393.","journal-title":"Data Mining and Knowledge Discovery"},{"key":"5259_CR4","series-title":"LNAI","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1007\/978-3-642-16184-1_27","volume-title":"Proceedings of discovery science 2010","author":"I. Bratko","year":"2010","unstructured":"Bratko, I. (2010). Discovery of abstract concepts by a robot. In LNAI: Vol. 6332. Proceedings of discovery science 2010 (pp. 372\u2013379). Berlin: Springer."},{"key":"5259_CR5","author":"I. Bratko","year":"1991","unstructured":"Bratko, I., Muggleton, S. H., & Varsek, A. (1991). Learning qualitative models of dynamic systems. In Proceedings of the eighth international machine learning workshop, San Mateo, CA. San Mateo: Morgan-Kaufmann.","volume-title":"Proceedings of the eighth international machine learning workshop"},{"key":"5259_CR6","author":"I. Bratko","year":"2008","unstructured":"Bratko, I., Leban, G., & \u017dabkar, J. (2008). An experiment in robot discovery with ilp. In Proceedings of the 18th international conference on inductive logic programming (ILP 2008). Berlin: Springer.","volume-title":"Proceedings of the 18th international conference on inductive logic programming (ILP 2008)"},{"key":"5259_CR7","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1613\/jair.62","volume":"2","author":"W. L. Buntine","year":"1994","unstructured":"Buntine, W. L. (1994). Operations for learning with graphical models. Journal of Artificial Intelligence Research, 2, 159\u2013225.","journal-title":"Journal of Artificial Intelligence Research"},{"issue":"1","key":"5259_CR8","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1007\/s10994-008-5076-4","volume":"73","author":"J. Chen","year":"2008","unstructured":"Chen, J., Muggleton, S. H., & Santos, J. (2008). Learning probabilistic logic models from probabilistic examples. Machine Learning, 73(1), 55\u201385. doi: 10.1007\/s10994-008-5076-4 .","journal-title":"Machine Learning"},{"key":"5259_CR9","author":"W. Cohen","first-page":"41","year":"1993","unstructured":"Cohen, W. (1993). PAC-learning a restricted class of logic programs. In S. Muggleton (Ed.), Proceedings of the 3rd international workshop on inductive logic programming (pp. 41\u201372).","volume-title":"Proceedings of the 3rd international workshop on inductive logic programming"},{"key":"5259_CR10","author":"D. Corapi","first-page":"54","year":"2010","unstructured":"Corapi, D., Russo, A., & Lupu, E. (2010). Inductive logic programming as abductive search. In Technical communications of ICLP\u201910 (pp. 54\u201363).","volume-title":"Technical communications of ICLP\u201910"},{"issue":"1\/2","key":"5259_CR11","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1023\/A:1007676901476","volume":"43","author":"M. Craven","year":"2001","unstructured":"Craven, M., & Slattery, S. (2001). Relational learning with statistical predicate invention: Better models for hypertext. Machine Learning, 43(1\/2), 97\u2013119.","journal-title":"Machine Learning"},{"issue":"3","key":"5259_CR12","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1023\/A:1010924021315","volume":"44","author":"J. Cussens","year":"2001","unstructured":"Cussens, J. (2001). Parameter estimation in stochastic logic programs. Machine Learning, 44(3), 245\u2013271.","journal-title":"Machine Learning"},{"key":"5259_CR13","author":"J. Davis","first-page":"217","year":"2009","unstructured":"Davis, J., & Domingo, P. (2009). Deep transfer via second-order markov logic. In Proceedings of the twenty-sixth international workshop on machine learning (pp. 217\u2013224). San Mateo: Morgan Kaufmann.","volume-title":"Proceedings of the twenty-sixth international workshop on machine learning"},{"issue":"1","key":"5259_CR14","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/S0004-3702(97)00041-6","volume":"95","author":"L. Raedt De","year":"1997","unstructured":"De Raedt, L. (1997). Logical settings for concept-learning. Artificial Intelligence, 95(1), 197\u2013201.","journal-title":"Artificial Intelligence"},{"key":"5259_CR15","author":"L. Raedt De","year":"2008","unstructured":"De Raedt, L. (2008). Logical and relational learning. Berlin: Springer.","volume-title":"Logical and relational learning","DOI":"10.1007\/978-3-540-68856-3","doi-asserted-by":"crossref"},{"key":"5259_CR16","author":"L. Raedt De","first-page":"175","year":"1991","unstructured":"De Raedt, L., & Bruynooghe, M. (1991). Clint: a\u00a0multistrategy interactive concept-learner and theory revision system. In Proceedings of the 1st international workshop on multistrategy learning (pp. 175\u2013191). San Mateo: Morgan Kaufmann.","volume-title":"Proceedings of the 1st international workshop on multistrategy learning"},{"key":"5259_CR17","author":"L. Raedt De","year":"2004","unstructured":"De Raedt, L., & Kersting, K. (2004). Probabilistic inductive logic programming. In S. Ben-David, J. Case, & A. Maruoka (Eds.), Lecture notes in computer science: Vol. 3244. Proceedings of the 15th international conference on algorithmic learning theory. Berlin: Springer.","series-title":"Lecture notes in computer science","volume-title":"Proceedings of the 15th international conference on algorithmic learning theory"},{"issue":"2","key":"5259_CR18","first-page":"227","volume":"4","author":"L. Raedt De","year":"1996","unstructured":"De Raedt, L., & Lavra\u010d, N. (1996). Multiple predicate learning in two inductive logic programming settings. Journal on Pure and Applied Logic, 4(2), 227\u2013254.","journal-title":"Journal on Pure and Applied Logic"},{"key":"5259_CR19","author":"L. Raedt De","first-page":"2462","year":"2007","unstructured":"De Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: a\u00a0probabilistic Prolog and its application in link discovery. In R. Lopez\u00a0de\u00a0Mantaras & M.M. Veloso (Eds.), Proceedings of the 20th international joint conference on artificial intelligence (IJCAI-2007) (pp. 2462\u20132467).","volume-title":"Proceedings of the 20th international joint conference on artificial intelligence (IJCAI-2007)"},{"key":"5259_CR20","year":"2008","unstructured":"De Raedt, L., Frasconi, P., Kersting, K., & Muggleton, S. H. (Eds.) (2008). LNAI: Vol. 4911. Probabilistic inductive logic programming. Berlin: Springer.","series-title":"LNAI","volume-title":"Probabilistic inductive logic programming"},{"key":"5259_CR21","author":"L. Dehaspe","first-page":"189","year":"2001","unstructured":"Dehaspe, L., & Toivonen, H. (2001). Discovery of relational association rules. In D\u017eeroski, S., & Lavra\u010d, N. (Eds.), Relational data mining (pp. 189\u2013212). Berlin: Springer.","volume-title":"Relational data mining","DOI":"10.1007\/978-3-662-04599-2_8","doi-asserted-by":"crossref"},{"issue":"1","key":"5259_CR22","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s10994-008-5079-1","volume":"73","author":"T. Dietterich","year":"2008","unstructured":"Dietterich, T., Domingos, P., Getoor, L., Muggleton, S. H., & Tadepalli, P. (2008). Structured machine learning: the next ten years. Machine Learning, 73(1), 3\u201323. doi: 10.1007\/s10994-008-5079-1 .","journal-title":"Machine Learning"},{"key":"5259_CR23","author":"B. Dolsak","first-page":"453","year":"1992","unstructured":"Dolsak, B., & Muggleton, S. H. (1992). The application of Inductive Logic Programming to finite element mesh design. In S. H. Muggleton (Ed.), Inductive logic programming (pp. 453\u2013472). London: Academic Press.","volume-title":"Inductive logic programming"},{"key":"5259_CR24","author":"P. S. Domingos","first-page":"2","year":"2006","unstructured":"Domingos, P. S., Kok, S., Poon, H., Richardson, M., & Singla, P. (2006). Unifying logical and statistical ai. In Proceedings of the twenty-first national conference on artificial intelligence, AAAI06 (pp. 2\u20137). Menlo Park\/Cambridge: AAAI Press\/MIT Press.","volume-title":"Proceedings of the twenty-first national conference on artificial intelligence, AAAI06"},{"key":"5259_CR25","year":"2001","unstructured":"D\u017eeroski, S., & Lavra\u010d, N. (Eds.) (2001). Relational data mining. Berlin: Springer.","volume-title":"Relational data mining"},{"key":"5259_CR26","author":"S. D\u017eeroski","first-page":"342","year":"1993","unstructured":"D\u017eeroski, S., Muggleton, S. H., & Russell, S. (1993). Learnability of constrained logic programs. In Proceedings of the European conference on machine learning (pp. 342\u2013347). London: Springer.","volume-title":"Proceedings of the European conference on machine learning"},{"issue":"1\/2","key":"5259_CR27","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1017394631519","volume":"43","author":"S. D\u017eeroski","year":"2001","unstructured":"D\u017eeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning. Machine Learning, 43(1\/2), 5\u201352.","journal-title":"Machine Learning"},{"key":"5259_CR28","author":"W. Emde","first-page":"122","year":"1996","unstructured":"Emde, W., & Wettschereck, D. (1996). Relational instance-based learning. In Proceedings of the 13th international machine learning conference (pp. 122\u2013130).","volume-title":"Proceedings of the 13th international machine learning conference"},{"key":"5259_CR29","author":"F. Esposito","first-page":"73","year":"1996","unstructured":"Esposito, F., Laterza, A., Malerba, D., & Semeraro, G. (1996). Refinement of Datalog programs. In Proceedings of the MLnet familiarization workshop on data mining with inductive logic programming (pp.\u00a073\u201394).","volume-title":"Proceedings of the MLnet familiarization workshop on data mining with inductive logic programming"},{"key":"5259_CR30","author":"C. Feng","year":"1992","unstructured":"Feng, C. (1992). Inducing temporal fault diagnostic rules from a qualitative model. In S. H. Muggleton (Ed.), Inductive logic programming. London: Academic Press.","volume-title":"Inductive logic programming"},{"key":"5259_CR31","series-title":"Lecture notes in artificial intelligence","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1007\/3-540-56602-3_129","volume-title":"Machine learning: ECML-93","author":"P. Flach","year":"1993","unstructured":"Flach, P. (1993). Predicate invention in inductive data engineering. In P. B. Brazdil (Ed.), Lecture notes in artificial intelligence: Vol. 667. Machine learning: ECML-93 (pp. 83\u201394). Berlin: Springer."},{"key":"5259_CR32","year":"2000","unstructured":"Flach, P. A., & Kakas, A. C. (Eds.) (2000). Abduction and induction: essays on their relation and integration. Dordrecht: Kluwer Academic.","volume-title":"Abduction and induction: essays on their relation and integration"},{"key":"5259_CR33","year":"2007","unstructured":"Getoor, L., & Taskar, B. (Eds.) (2007). An introduction to statistical relational learning. Cambridge: MIT Press.","volume-title":"An introduction to statistical relational learning"},{"key":"5259_CR34","author":"L. Getoor","first-page":"307","year":"2001","unstructured":"Getoor, L., Friedman, N., Koller, D., & Pfeffer, A. (2001). Learning probabilistic relational models. In D\u017eeroski, S., & Lavra\u010d, N. (Eds.), Relational data mining (pp.\u00a0307\u2013335). Berlin: Springer.","volume-title":"Relational data mining","DOI":"10.1007\/978-3-662-04599-2_13","doi-asserted-by":"crossref"},{"key":"5259_CR35","author":"J. H. Graham","first-page":"400","year":"2003","unstructured":"Graham, J. H., Page, C. D., & Kamal, A. H. (2003). Accelerating the drug design process through parallel inductive logic programming data mining. In Proceedings of the IEEE computer society bioinformatics conference\u2014CSB (pp. 400\u2013402). New York: IEEE Press.","volume-title":"Proceedings of the IEEE computer society bioinformatics conference\u2014CSB","DOI":"10.1109\/CSB.2003.1227345","doi-asserted-by":"crossref"},{"key":"5259_CR36","author":"M. Horsch","first-page":"155","year":"1990","unstructured":"Horsch, M., & Poole, D. L. (1990). A dynamic approach to probabilistic inference using Bayesian networks. In Proc. sixth conference on uncertainty in AI, Boston, July 1990 (pp. 155\u2013161).","volume-title":"Proc. sixth conference on uncertainty in AI"},{"key":"5259_CR37","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1023\/B:MACH.0000023149.72125.e2","volume":"55","author":"K. Inoue","year":"2004","unstructured":"Inoue, K. (2004). Induction as consequence finding. Machine Learning, 55, 109\u2013135.","journal-title":"Machine Learning"},{"key":"5259_CR38","series-title":"LNAI","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/978-3-642-13840-9_6","volume-title":"Proceedings of the nineteenth international conference on inductive logic programming (ILP09)","author":"K. Inoue","year":"2010","unstructured":"Inoue, K., Furukawa, K., Kobayashiand, I., & Nabeshima, H. (2010). Discovering rules by meta-level abduction. In L. De Raedt (Ed.), LNAI: Vol. 5989. Proceedings of the nineteenth international conference on inductive logic programming (ILP09) (pp. 49\u201364). Berlin: Springer."},{"key":"5259_CR39","series-title":"LNAI","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1007\/3-540-44797-0_10","volume-title":"Proceedings of the eleventh international conference on inductive logic programming","author":"K. Kersting","year":"2001","unstructured":"Kersting, K., & De Raedt, L. (2001). Towards combining inductive logic programming with bayesian networks. In LNAI: Vol. 2157. Proceedings of the eleventh international conference on inductive logic programming (pp. 118\u2013131). Berlin: Springer."},{"key":"5259_CR40","first-page":"425","volume":"25","author":"K. Kersting","year":"2006","unstructured":"Kersting, K., De Raedt, L., & Raiko, T. (2006). Logical Hidden Markov Models, 25, 425\u2013456.","journal-title":"Logical Hidden Markov Models"},{"key":"5259_CR41","author":"R. Khardon","first-page":"154","year":"1998","unstructured":"Khardon, R. (1998). Learning first order universal Horn expressions. In Proceedings of the eleventh annual ACM conference on computational learning theory (pp. 154\u2013165). New York: ACM.","volume-title":"Proceedings of the eleventh annual ACM conference on computational learning theory","DOI":"10.1145\/279943.279976","doi-asserted-by":"crossref"},{"key":"5259_CR42","series-title":"Lecture notes in artificial intelligence","first-page":"115","volume-title":"Proceedings of the 6th European conference on machine learning","author":"J. U. Kietz","year":"1993","unstructured":"Kietz, J. U. (1993). Some lower bounds on the computational complexity of inductive logic programming. In P. Brazdil (Ed.), Lecture notes in artificial intelligence: Vol. 667. Proceedings of the 6th European conference on machine learning (pp. 115\u2013123). Berlin: Springer."},{"key":"5259_CR43","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1073\/pnas.93.1.438","volume":"93","author":"R. D. King","year":"1996","unstructured":"King, R. D., Muggleton, S. H., Srinivasan, A., & Sternberg, M. J. E. (1996). Structure-activity relationships derived by machine learning: the use of atoms and their bond connectives to predict mutagenicity by inductive logic programming. Proceedings of the National Academy of Sciences, 93, 438\u2013442.","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"5259_CR44","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1038\/nature02236","volume":"427","author":"R. D. King","year":"2004","unstructured":"King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. K. G., Bryant, C. H., Muggleton, S. H., Kell, D. B., & Oliver, S. G. (2004). Functional genomic hypothesis generation and experimentation by a robot scientist. Nature, 427, 247\u2013252.","journal-title":"Nature"},{"issue":"5923","key":"5259_CR45","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1126\/science.1165620","volume":"324","author":"R. D. King","year":"2009","unstructured":"King, R. D., Rowland, J., Oliver, S. G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L. N., Aparkes, A., Whelan, K. E., & Clare, A. (2009). The automation of science. Science, 324(5923), 85\u201389.","journal-title":"Science"},{"key":"5259_CR46","author":"A. J. Knobbe","first-page":"1","year":"2002","unstructured":"Knobbe, A. J., Siebes, A., & Marseille, B. (2002). Involving aggregate functions in multi-relational search. In Proceedings of the 6th European conference on data mining principles and practice of knowledge discovery in databases (p.\u00a01).","volume-title":"Proceedings of the 6th European conference on data mining principles and practice of knowledge discovery in databases"},{"key":"5259_CR47","author":"S. Kramer","first-page":"262","year":"2001","unstructured":"Kramer, S., Lavra\u010d, N., & Flach, P. (2001). Propositionalization approaches to relational data mining. In S.\u00a0D\u017eeroski & N.\u00a0Lavra\u010d (Eds.), Relational data mining (pp. 262\u2013291). Berlin: Springer.","volume-title":"Relational data mining","DOI":"10.1007\/978-3-662-04599-2_11","doi-asserted-by":"crossref"},{"key":"5259_CR48","series-title":"LNCS","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1007\/3-540-44797-0_12","volume-title":"Inductive logic programming","author":"M.-A. Krogel","year":"2001","unstructured":"Krogel, M.-A., & Wrobel, S. (2001). Transformation-based learning using multirelational aggregation. In LNCS: Vol.\u00a02157. Inductive logic programming (pp.\u00a0142\u2013155)."},{"key":"5259_CR49","first-page":"481","volume":"8","author":"N. Landwehr","year":"2007","unstructured":"Landwehr, N., Kersting, K., & De Raedt, L. (2007). Integrating naive Bayes and Foil. Journal of Machine Learning Research, 8, 481\u2013507.","journal-title":"Journal of Machine Learning Research"},{"key":"5259_CR50","author":"N. Lavra\u010d","year":"1993","unstructured":"Lavra\u010d, N., & D\u017eeroski, S. (1993). Inductive logic programming: techniques and applications. Chichester: Ellis Horwood.","volume-title":"Inductive logic programming: techniques and applications"},{"key":"5259_CR51","author":"N. Lavra\u010d","year":"1991","unstructured":"Lavra\u010d, N., D\u017eeroski, S., & Grobelnik, M. (1991). Learning non-recursive definitions of relations with LINUS. In Y. Kodratoff (Ed.), Lecture notes in artificial intelligence: Vol. 482. Proceedings of the 5th European working session on learning. Berlin: Springer.","series-title":"Lecture notes in artificial intelligence","volume-title":"Proceedings of the 5th European working session on learning"},{"key":"5259_CR52","author":"F. A. Lisi","year":"2003","unstructured":"Lisi, F. A., & Malerba, D. (2003). Bridging the gap between horn clausal logic and description logics in inductive learning. In LNCS: Vol. 2829. AI*IA 2003: Advances in artificial intelligence. Berlin: Springer.","series-title":"LNCS","volume-title":"AI*IA 2003: Advances in artificial intelligence"},{"key":"5259_CR53","author":"J. W. Lloyd","year":"2003","unstructured":"Lloyd, J. W. (2003). Logic for learning. Berlin: Springer.","volume-title":"Logic for learning","DOI":"10.1007\/978-3-662-08406-9","doi-asserted-by":"crossref"},{"key":"5259_CR54","author":"L. Mihalkova","first-page":"1163","year":"2009","unstructured":"Mihalkova, L., & Mooney, R. J. (2009). Transfer learning from minimal target data by mapping across relational domains. In IJCAI-09: Proceedings of the twentieth international joint conference on artificial intelligence (pp. 1163\u20131168). San Mateo: Morgan-Kaufmann.","volume-title":"IJCAI-09: Proceedings of the twentieth international joint conference on artificial intelligence"},{"key":"5259_CR55","author":"B. Milch","year":"2008","unstructured":"Milch, B., Zettlemoyer, L. S., Kersting, K., Haimes, M., & Kaelbling, L. P. (2008). Lifted probabilistic inference with counting formulas. In Proceedings of the twenty third conference on artificial intelligence (AAAI).","volume-title":"Proceedings of the twenty third conference on artificial intelligence (AAAI)"},{"key":"5259_CR56","author":"K. Morik","year":"1993","unstructured":"Morik, K., Wrobel, S., Kietz, J., & Emde, W. (1993). Knowledge acquisition and machine learning: theory, methods and applications. London: Academic Press.","volume-title":"Knowledge acquisition and machine learning: theory, methods and applications"},{"key":"5259_CR57","series-title":"LNAI","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1007\/3540635149_49","volume-title":"Proceedings of the seventh inductive logic programming workshop (ILP97)","author":"S. Moyle","year":"1997","unstructured":"Moyle, S., & Muggleton, S. H. (1997). Learning programs in the event calculus. In N. Lavra\u010d & S. D\u017eeroski (Eds.), LNAI: Vol. 1297. Proceedings of the seventh inductive logic programming workshop (ILP97) (pp. 205\u2013212). Berlin: Springer."},{"key":"5259_CR58","author":"S. H. Muggleton","first-page":"287","year":"1987","unstructured":"Muggleton, S. H. (1987). Duce, an oracle based approach to constructive induction. In IJCAI-87 (pp. 287\u2013292). Los Altos: Kaufmann.","volume-title":"IJCAI-87"},{"issue":"4","key":"5259_CR59","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1007\/BF03037089","volume":"8","author":"S. H. Muggleton","year":"1991","unstructured":"Muggleton, S. H. (1991). Inductive logic programming. New Generation Computing, 8(4), 295\u2013318.","journal-title":"New Generation Computing"},{"key":"5259_CR60","year":"1992","unstructured":"Muggleton, S. H. (Ed.) (1992). Inductive logic programming. San Diego: Academic Press.","volume-title":"Inductive logic programming"},{"key":"5259_CR61","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1007\/BF03037227","volume":"13","author":"S. H. Muggleton","year":"1995","unstructured":"Muggleton, S. H. (1995). Inverse entailment and Progol. New Generation Computing, 13, 245\u2013286.","journal-title":"New Generation Computing"},{"key":"5259_CR62","author":"S. H. Muggleton","first-page":"254","year":"1996","unstructured":"Muggleton, S. H. (1996). Stochastic logic programs. In L. de Raedt (Ed.), Advances in inductive logic programming (pp. 254\u2013264). Amsterdam: IOS Press.","volume-title":"Advances in inductive logic programming"},{"key":"5259_CR63","author":"S. H. Muggleton","first-page":"198","year":"2002","unstructured":"Muggleton, S. H. (2002). Learning structure and parameters of stochastic logic programs. In Proceedings of the 12th international conference on inductive logic programming (pp. 198\u2013206). Berlin: Springer.","volume-title":"Proceedings of the 12th international conference on inductive logic programming"},{"key":"5259_CR64","author":"S. H. Muggleton","first-page":"130","year":"2000","unstructured":"Muggleton, S. H., & Bryant, C. H. (2000). Theory completion using inverse entailment. In Proc. of the 10th international workshop on inductive logic programming (ILP-00) (pp. 130\u2013146). Berlin: Springer.","volume-title":"Proc. of the 10th international workshop on inductive logic programming (ILP-00)","DOI":"10.1007\/3-540-44960-4_8","doi-asserted-by":"crossref"},{"key":"5259_CR65","author":"S. H. Muggleton","first-page":"339","year":"1988","unstructured":"Muggleton, S. H., & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution. In Proceedings of the 5th international conference on machine learning (pp. 339\u2013352). Los Altos: Kaufmann.","volume-title":"Proceedings of the 5th international conference on machine learning"},{"key":"5259_CR66","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1016\/0743-1066(94)90035-3","volume":"19\u201320","author":"S. H. Muggleton","year":"1994","unstructured":"Muggleton, S. H., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of Logic Programming, 19\u201320, 629\u2013679.","journal-title":"Journal of Logic Programming"},{"key":"5259_CR67","author":"S. H. Muggleton","first-page":"368","year":"1990","unstructured":"Muggleton, S. H., & Feng, C. (1990). Efficient induction of logic programs. In Proceedings of the first conference on algorithmic learning theory (pp. 368\u2013381). Tokyo: Ohmsha.","volume-title":"Proceedings of the first conference on algorithmic learning theory"},{"key":"5259_CR68","author":"S. H. Muggleton","first-page":"281","year":"1992","unstructured":"Muggleton, S. H., & Feng, C. (1992). Efficient induction of logic programs. In S. H. Muggleton (Ed.), Inductive logic programming (pp. 281\u2013298). London: Academic Press.","volume-title":"Inductive logic programming"},{"issue":"7","key":"5259_CR69","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1093\/protein\/5.7.647","volume":"5","author":"S. H. Muggleton","year":"1992","unstructured":"Muggleton, S. H., King, R. D., & Sternberg, M. J. E. (1992). Protein secondary structure prediction using logic-based machine learning. Protein Engineering, 5(7), 647\u2013657.","journal-title":"Protein Engineering"},{"key":"5259_CR70","author":"S. H. Muggleton","first-page":"252","year":"2002","unstructured":"Muggleton, S. H., Fidjeland, A., & Luk, W. (2002). Scalable acceleration of inductive logic programs. In IEEE international conference on field-programmable technology (pp. 252\u2013259). New York: IEEE Press.","volume-title":"IEEE international conference on field-programmable technology"},{"key":"5259_CR71","author":"S.-H. Nienhuys-Cheng","year":"1997","unstructured":"Nienhuys-Cheng, S.-H., & de Wolf, R. (1997). LNAI: Vol. 1228. Foundations of inductive logic programming. Berlin: Springer.","series-title":"LNAI","volume-title":"Foundations of inductive logic programming","DOI":"10.1007\/3-540-62927-0","doi-asserted-by":"crossref"},{"key":"5259_CR72","author":"R. Otero","first-page":"279","year":"2005","unstructured":"Otero, R. (2005). Induction of the indirect effects of actions by monotonic methods. In Proceedings of the fifteenth international conference on inductive logic programming (ILP05) (Vol.\u00a03625, pp. 279\u2013294). Berlin: Springer.","volume-title":"Proceedings of the fifteenth international conference on inductive logic programming (ILP05)","DOI":"10.1007\/11536314_17","doi-asserted-by":"crossref"},{"key":"5259_CR73","first-page":"307","volume":"7","author":"A. Passerini","year":"2006","unstructured":"Passerini, A., Frasconi, P., & De Raedt, L. (2006). Kernels on Prolog proof trees: statistical learning in the ILP setting. Journal of Machine Learning Research, 7, 307\u2013342.","journal-title":"Journal of Machine Learning Research"},{"key":"5259_CR74","author":"G. D. Plotkin","first-page":"153","year":"1969","unstructured":"Plotkin, G. D. (1969). A note on inductive generalisation. In B. Meltzer & D. Michie (Eds.), Machine intelligence (Vol.\u00a05, pp. 153\u2013163). Edinburgh: Edinburgh University Press.","volume-title":"Machine intelligence"},{"key":"5259_CR75","unstructured":"Plotkin, G. D. (1971a). Automatic methods of inductive inference. Ph.D. thesis, Edinburgh University, August 1971."},{"key":"5259_CR76","author":"G. D. Plotkin","year":"1971","unstructured":"Plotkin, G. D. (1971b). A further note on inductive generalization. In Machine intelligence (Vol.\u00a06). Edinburgh: Edinburgh University Press.","volume-title":"Machine intelligence"},{"key":"5259_CR77","unstructured":"Poole, D. L. (1991). Representing diagnostic knowledge for probabilistic Horn abduction (pp.\u00a01129\u20131135). Sydney."},{"issue":"1","key":"5259_CR78","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/0004-3702(93)90061-F","volume":"64","author":"D. L. Poole","year":"1993","unstructured":"Poole, D. L. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64(1), 81\u2013129.","journal-title":"Artificial Intelligence"},{"key":"5259_CR79","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/S0004-3702(97)00027-1","volume":"94","author":"D. L. Poole","year":"1997","unstructured":"Poole, D. L. (1997). The independent choice logic for modelling multiple agents under uncertainty. Artificial Intelligence, 94, 7\u201356. Special issue on economic principles of multi-agent systems.","journal-title":"Artificial Intelligence"},{"issue":"1\u20133","key":"5259_CR80","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1016\/S0743-1066(99)00071-0","volume":"44","author":"D. L. Poole","year":"2000","unstructured":"Poole, D. L. (2000). Abducing through negation as failure: stable models within the independent choice logic. Journal of Logic Programming, 44(1\u20133), 5\u201335.","journal-title":"Journal of Logic Programming"},{"key":"5259_CR81","author":"D. L. Poole","first-page":"985","year":"2003","unstructured":"Poole, D. L. (2003). First-order probabilistic inference. In Proc. eighteenth international joint conference on artificial intelligence (IJCAI-03), Acapulco, Mexico (pp.\u00a0985\u2013991).","volume-title":"Proc. eighteenth international joint conference on artificial intelligence (IJCAI-03)"},{"key":"5259_CR82","author":"D. L. Poole","year":"2008","unstructured":"Poole, D. L. (2008). The independent choice logic and beyond. In L. De Raedt, P. Frasconi, K. Kersting, & S.\u00a0Muggleton (Eds.), LNCS: Vol. 4911. Probabilistic inductive logic programming: theory and application. Berlin: Springer.","series-title":"LNCS","volume-title":"Probabilistic inductive logic programming: theory and application"},{"key":"5259_CR83","author":"D. L. Poole","year":"2010","unstructured":"Poole, D. L., & Mackworth, A. K. (2010). Artificial intelligence: foundations of computational agents. New York: Cambridge University Press.","volume-title":"Artificial intelligence: foundations of computational agents","DOI":"10.1017\/CBO9780511794797","doi-asserted-by":"crossref"},{"key":"5259_CR84","author":"J. R. Quinlan","first-page":"304","year":"1987","unstructured":"Quinlan, J. R. (1987). Generating production rules from decision trees. In Proceedings of the tenth international conference on artificial intelligence (pp. 304\u2013307). Los Altos: Kaufmann.","volume-title":"Proceedings of the tenth international conference on artificial intelligence"},{"key":"5259_CR85","first-page":"239","volume":"5","author":"J. R. Quinlan","year":"1990","unstructured":"Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239\u2013266.","journal-title":"Machine Learning"},{"key":"5259_CR86","series-title":"Lecture notes in artificial intelligence","first-page":"3","volume-title":"Proceedings of the 6th European conference on machine learning","author":"J. R. Quinlan","year":"1993","unstructured":"Quinlan, J. R., & Cameron-Jones, R.M. (1993). FOIL: a\u00a0midterm report. In P. Brazdil (Ed.), Lecture notes in artificial intelligence: Vol. 667. Proceedings of the 6th European conference on machine learning (pp. 3\u201320). Berlin: Springer."},{"key":"5259_CR87","series-title":"Lecture notes in artificial intelligence","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1007\/978-3-540-39917-9_21","volume-title":"Proceedings of the 13th international conference on inductive logic programming (ILP\u201903)","author":"O. Ray","year":"2003","unstructured":"Ray, O., Broda, K., & Russo, A. (2003). Hybrid abductive inductive learning: a\u00a0generalisation of Progol. In Lecture notes in artificial intelligence: Vol. 2835. Proceedings of the 13th international conference on inductive logic programming (ILP\u201903) (pp. 311\u2013328). Berlin: Springer."},{"key":"5259_CR88","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1007\/s10994-006-5833-1","volume":"62","author":"M. Richardson","year":"2006","unstructured":"Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107\u2013136.","journal-title":"Machine Learning"},{"key":"5259_CR89","author":"C. Rouveirol","first-page":"201","year":"1989","unstructured":"Rouveirol, C., & Puget, J.-F. (1989). A\u00a0simple and general solution for inverting resolution. In EWSL-89 (pp. 201\u2013210). London: Pitman.","volume-title":"EWSL-89"},{"key":"5259_CR90","author":"S. J. Russell","year":"2010","edition":"3","unstructured":"Russell, S. J., & Norvig, P. (2010). Artificial intelligence: a modern approach (3rd ed.). New Jersey: Pearson.","volume-title":"Artificial intelligence: a modern approach"},{"key":"5259_CR91","author":"C. Sammut","first-page":"167","year":"1986","unstructured":"Sammut, C., & Banerji, R.B. (1986). Learning concepts by asking questions. In R. Michalski, J. Carbonnel, & T. Mitchell (Eds.), Machine learning: an artificial intelligence approach (Vol.\u00a02, pp. 167\u2013192). Los Altos: Kaufmann.","volume-title":"Machine learning: an artificial intelligence approach"},{"key":"5259_CR92","year":"2010","unstructured":"Sammut, C., & Webb, G. (Eds.) (2010). Encyclopedia of machine learning. Berlin: Springer.","volume-title":"Encyclopedia of machine learning"},{"key":"5259_CR93","author":"S. Sanner","year":"2010","unstructured":"Sanner, S., & Kersting, K. (2010). Symbolic dynamic programming. In C. Sammut & G. Webb (Eds.), Encyclopedia of machine learning. Berlin: Springer.","volume-title":"Encyclopedia of machine learning"},{"key":"5259_CR94","author":"V. Santos Costa","first-page":"517","year":"2003","unstructured":"Santos Costa, V., Page, D., Qazi, M., & Cussens, J. (2003). CLP(BN): Constraint logic programming for probabilistic knowledge. In Proceedings of the 19th conference on uncertainty in artificial intelligence (pp. 517\u2013524).","volume-title":"Proceedings of the 19th conference on uncertainty in artificial intelligence"},{"key":"5259_CR95","author":"T. Sato","first-page":"847","year":"2005","unstructured":"Sato, T. (2005). Generative modeling with failure in prism. In International joint conference on artificial intelligence (pp. 847\u2013852). San Mateo: Morgan Kaufmann.","volume-title":"International joint conference on artificial intelligence"},{"key":"5259_CR96","author":"T. Sato","first-page":"1330","year":"1997","unstructured":"Sato, T., & Kameya, Y. (1997). PRISM: a\u00a0symbolic-statistical modeling language. In Proceedings of the 15th international joint conference on artificial intelligence (IJCAI-97) (pp. 1330\u20131335).","volume-title":"Proceedings of the 15th international joint conference on artificial intelligence (IJCAI-97)"},{"key":"5259_CR97","series-title":"LNCS","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1007\/978-3-540-78652-8_5","volume-title":"Probabilistic inductive logic programming","author":"T. Sato","year":"2008","unstructured":"Sato, T., & Kameya, Y. (2008). New advances in logic-based probabilistic modeling by PRISM. In L. De Raedt, P. Frasconi, K. Kersting, & S. Muggleton (Eds.), LNCS: Vol. 4911. Probabilistic inductive logic programming (pp. 118\u2013155). Berlin: Springer."},{"key":"5259_CR98","author":"E. Y. Shapiro","year":"1983","unstructured":"Shapiro, E. Y. (1983). Algorithmic program debugging. Cambridge: MIT Press.","volume-title":"Algorithmic program debugging"},{"key":"5259_CR99","unstructured":"Stahl, I. (1992). Constructive induction in inductive logic programming: an overview (Technical report). Fakultat Informatik, Universitat Stuttgart."},{"key":"5259_CR100","author":"I. Stahl","first-page":"34","year":"1996","unstructured":"Stahl, I. (1996). Predicate invention in inductive logic programming. In L. De Raedt (Ed.), Advances in inductive logic programming (pp. 34\u201347). Amsterdam: IOS Press.","volume-title":"Advances in inductive logic programming"},{"key":"5259_CR101","author":"R. S. Sutton","year":"1998","unstructured":"Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge: MIT Press.","volume-title":"Reinforcement learning: an introduction"},{"key":"5259_CR102","author":"G. Synnaeve","year":"2011","unstructured":"Synnaeve, G., Inoue, K., Doncescu, A., Kameya, Y., Sato, T., Ishihata, M., & Nabeshima, H. (2011). Kinetic models and qualitative abstraction for relational learning in systems biology. In Proceedings of the international conference on bioinformatics models, methods and algorithms.","volume-title":"Proceedings of the international conference on bioinformatics models, methods and algorithms"},{"key":"5259_CR103","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1007\/s10994-006-8988-x","volume":"64","author":"A. Tamaddoni-Nezhad","year":"2006","unstructured":"Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., & Muggleton, S. H. (2006). Application of abductive ILP to learning metabolic network inhibition from temporal data. Machine Learning, 64, 209\u2013230. doi: 10.1007\/s10994-006-8988-x .","journal-title":"Machine Learning"},{"key":"5259_CR104","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1109\/MEMB.2007.335590","volume":"26","author":"A. Tamaddoni-Nezhad","year":"2007","unstructured":"Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Sternberg, M. J. E., Nicholson, J., & Muggleton, S. H. (2007). Modeling the effects of toxins in metabolic networks. IEEE Engineering in Medicine and Biology, 26, 37\u201346. doi: 10.1109\/MEMB.2007.335590 .","journal-title":"IEEE Engineering in Medicine and Biology"},{"key":"5259_CR105","series-title":"LNAI","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1007\/978-3-642-13840-9_23","volume-title":"Proceedings of the nineteenth international conference on inductive logic programming (ILP09)","author":"L. Torrey","year":"2010","unstructured":"Torrey, L., & Shavlik, J. W. (2010). Policy transfer via Markov logic networks. In L. De Raedt (Ed.), LNAI: Vol. 5989. Proceedings of the nineteenth international conference on inductive logic programming (ILP09) (pp. 234\u2013248). Berlin: Springer."},{"key":"5259_CR106","author":"G. Broeck Van\u00a0den","year":"2010","unstructured":"Van\u00a0den Broeck, G., Thon, I., van Otterlo, M., & De Raedt, L. (2010). DTProbLog: A\u00a0decision-theoretic probabilistic prolog. In Proceedings of the AAAI conference on artificial intelligence (AAAI 2010).","volume-title":"Proceedings of the AAAI conference on artificial intelligence (AAAI 2010)"},{"key":"5259_CR107","author":"M. Otterlo van","year":"2009","unstructured":"van Otterlo, M. (2009). The logic of adaptive behavior\u2014knowledge representation and algorithms for adaptive sequential decision making under uncertainty in first-order and relational domains. Amsterdam: IOS Press.","volume-title":"The logic of adaptive behavior\u2014knowledge representation and algorithms for adaptive sequential decision making under uncertainty in first-order and relational domains"},{"key":"5259_CR108","series-title":"Lecture notes in computer science","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1007\/11871637_37","volume-title":"Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases","author":"C. Vens","year":"2006","unstructured":"Vens, C., Ramon, J., & Blockeel, H. (2006). Refining aggregate conditions in relational learning. In J.\u00a0F\u00fcrnkranz, T.\u00a0Scheffer, & M. Spiliopoulou (Eds.), Lecture notes in computer science: Vol. 4213. Proceedings of the 10th European conference on principles and practice of knowledge discovery in databases (pp. 383\u2013394). Berlin: Springer."},{"key":"5259_CR109","author":"S. A. Vere","first-page":"282","year":"1975","unstructured":"Vere, S. A. (1975). Induction of concepts in the predicate calculus. In Proceedings of the 4th international joint conference on artificial intelligence (pp. 282\u2013287). San Mateo: Morgan Kaufmann.","volume-title":"Proceedings of the 4th international joint conference on artificial intelligence"},{"key":"5259_CR110","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1023\/A:1022674116380","volume":"14","author":"S. Wrobel","year":"1994","unstructured":"Wrobel, S. (1994). Concept formation during iterative theory revision. Machine Learning, 14, 169\u2013191.","journal-title":"Machine Learning"},{"key":"5259_CR111","author":"Y. Yamamoto","year":"2010","unstructured":"Yamamoto, Y., Inoue, K., & Iwanuma, K. (2010). From inverese entailment to inverese subsumption. In\u00a0Proceedings of the 20th international conference on inductive logic programming (ILP\u201910).","volume-title":"Proceedings of the 20th international conference on inductive logic programming (ILP\u201910)"}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-011-5259-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-011-5259-2\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-011-5259-2","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,15]],"date-time":"2019-06-15T01:14:59Z","timestamp":1560561299000},"score":1.0,"subtitle":["Biography and future challenges"],"short-title":[],"issued":{"date-parts":[[2011,9,5]]},"references-count":111,"journal-issue":{"published-print":{"date-parts":[[2012,1]]},"issue":"1"},"alternative-id":["5259"],"URL":"http:\/\/dx.doi.org\/10.1007\/s10994-011-5259-2","relation":{"cites":[]},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}]}}