{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T09:26:22Z","timestamp":1725614782027},"publisher-location":"New York, NY, USA","reference-count":19,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2005,8,21]]},"DOI":"10.1145\/1081870.1081952","type":"proceedings-article","created":{"date-parts":[[2005,11,7]],"date-time":"2005-11-07T17:34:39Z","timestamp":1131384879000},"page":"654-659","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":6,"title":["Efficient computations via scalable sparse kernel partial least squares and boosted latent features"],"prefix":"10.1145","volume":"3","author":[{"given":"Michinari","family":"Momma","sequence":"first","affiliation":[{"name":"Fair Isaac Corporation, San Diego, CA"}]}],"member":"320","published-online":{"date-parts":[[2005,8,21]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"DELVE\n : Data for evaluating learning in valid experiments. http:\/\/www.cs.toronto.edu\/~delve\/. DELVE: Data for evaluating learning in valid experiments. http:\/\/www.cs.toronto.edu\/~delve\/."},{"volume-title":"Proceedings of the NATO Advanced Study Institute on Learning Theory and Practice (LTP 2002)","year":"2003","author":"Bennett K. P.","key":"e_1_3_2_1_2_1","unstructured":"K. P. Bennett and M. J. Embrechts . An optimization perspective on kernel partial least squares . In Proceedings of the NATO Advanced Study Institute on Learning Theory and Practice (LTP 2002) , 2003 . K. P. Bennett and M. J. Embrechts. An optimization perspective on kernel partial least squares. In Proceedings of the NATO Advanced Study Institute on Learning Theory and Practice (LTP 2002), 2003."},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1007\/978-3-540-39624-6_15","volume-title":"Algorithmic Learning Theory (ALT2003)","author":"Bie T. D.","year":"2003","unstructured":"T. D. Bie , M. Momma , and N. Cristianini . Efficiently learning the metric with side-information . In Algorithmic Learning Theory (ALT2003) , pages 175 -- 189 . Springer-Verlag Heidelberg , 2003 . T. D. Bie, M. Momma, and N. Cristianini. Efficiently learning the metric with side-information. In Algorithmic Learning Theory (ALT2003), pages 175--189. Springer-Verlag Heidelberg, 2003."},{"volume-title":"UCI Repository of machine learning databases","year":"1998","author":"Blake C. L.","key":"e_1_3_2_1_4_1","unstructured":"C. L. Blake and C. J. Merz . UCI Repository of machine learning databases , 1998 . http:\/\/www.ics.uci.edu\/~mlearn\/MLRepository.html. C. L. Blake and C. J. Merz. UCI Repository of machine learning databases, 1998. http:\/\/www.ics.uci.edu\/~mlearn\/MLRepository.html."},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1162\/15324430152733142"},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.5555\/345662"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1016\/0169-7439(93)85002-X"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF00142661"},{"volume-title":"Gradient directed regularization of linear regression and classification. Technical report","year":"2004","author":"Friedman J. H.","key":"e_1_3_2_1_9_1","unstructured":"J. H. Friedman and B. E. Popescu . Gradient directed regularization of linear regression and classification. Technical report , Stanford University , 2004 . J. H. Friedman and B. E. Popescu. Gradient directed regularization of linear regression and classification. Technical report, Stanford University, 2004."},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1080\/03610918808812681"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2004.1379970"},{"volume-title":"RSISE","year":"1999","author":"Mason L.","key":"e_1_3_2_1_12_1","unstructured":"L. Mason , J. Baxter , P. Bartlett , and M. Frean . Boosting algorithms as gradient descent in function space. Technical report , RSISE , Australian National University , 1999 . L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent in function space. Technical report, RSISE, Australian National University, 1999."},{"volume-title":"Efficient computations via scalable sparse kernel partial least squares and boosted latent features. Technical report","year":"2005","author":"Momma M.","key":"e_1_3_2_1_13_1","unstructured":"M. Momma . Efficient computations via scalable sparse kernel partial least squares and boosted latent features. Technical report , 2005 . http:\/\/www.rpi.edu\/~mommam\/. M. Momma. Efficient computations via scalable sparse kernel partial least squares and boosted latent features. Technical report, 2005. http:\/\/www.rpi.edu\/~mommam\/."},{"volume-title":"Feature Extraction, Foundations and Applications","year":"2004","author":"Momma M.","key":"e_1_3_2_1_14_1","unstructured":"M. Momma and K. Bennett . Constructing orthogonal latent features for arbitrary loss . In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature Extraction, Foundations and Applications . Springer , 2004 . M. Momma and K. Bennett. Constructing orthogonal latent features for arbitrary loss. In I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature Extraction, Foundations and Applications. Springer, 2004."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-45167-9_17"},{"key":"e_1_3_2_1_16_1","first-page":"781","article-title":"Some greedy learning algorithms for sparse regression and classification with mercer kernels","volume":"3","author":"Nair P. B.","year":"2002","unstructured":"P. B. Nair , A. Choudhury , and A. J. Keane . Some greedy learning algorithms for sparse regression and classification with mercer kernels . Journal of Machine Learning Research , 3 : 781 -- 801 , 2002 . P. B. Nair, A. Choudhury, and A. J. Keane. Some greedy learning algorithms for sparse regression and classification with mercer kernels. Journal of Machine Learning Research, 3:781--801, 2002.","journal-title":"Journal of Machine Learning Research"},{"volume-title":"Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003)","year":"2003","author":"Rosipal R.","key":"e_1_3_2_1_17_1","unstructured":"R. Rosipal , M. Girolami , and L. J. Trejo . Kernel PLS-SVC for linear and nonlinear classification . In Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003) , 2003 . R. Rosipal, M. Girolami, and L. J. Trejo. Kernel PLS-SVC for linear and nonlinear classification. In Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), 2003."},{"key":"e_1_3_2_1_18_1","first-page":"97","article-title":"Kernel partial least squares regression in reproducing kernel hilbert space","volume":"2","author":"Rosipal R.","year":"2001","unstructured":"R. Rosipal and L. T. Trejo . Kernel partial least squares regression in reproducing kernel hilbert space . Journal of Machine Learning Research , 2 : 97 -- 123 , 2001 . R. Rosipal and L. T. Trejo. Kernel partial least squares regression in reproducing kernel hilbert space. Journal of Machine Learning Research, 2:97--123, 2001.","journal-title":"Journal of Machine Learning Research"},{"key":"e_1_3_2_1_19_1","first-page":"391","volume-title":"Multivariate Analysis","author":"Wold H.","year":"1966","unstructured":"H. Wold . Estimation of principal components and related models by iterative least squares . In Multivariate Analysis , pages 391 -- 420 , New York, 1966 . Academic Press . H. Wold. Estimation of principal components and related models by iterative least squares. In Multivariate Analysis, pages 391--420, New York, 1966. Academic Press."}],"event":{"name":"KDD05: The Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","sponsor":["SIGMOD ACM Special Interest Group on Management of Data","SIGKDD ACM Special Interest Group on Knowledge Discovery in Data","ACM Association for Computing Machinery"],"location":"Chicago Illinois USA","acronym":"KDD05"},"container-title":["Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/1081870.1081952","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T15:47:51Z","timestamp":1673106471000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/1081870.1081952"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2005,8,21]]},"references-count":19,"alternative-id":["10.1145\/1081870.1081952","10.1145\/1081870"],"URL":"http:\/\/dx.doi.org\/10.1145\/1081870.1081952","relation":{},"subject":[],"published":{"date-parts":[[2005,8,21]]},"assertion":[{"value":"2005-08-21","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}