{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,6,18]],"date-time":"2022-06-18T00:29:50Z","timestamp":1655512190377},"publisher-location":"New York, NY, USA","reference-count":21,"publisher":"ACM","license":[{"start":{"date-parts":[[2017,6,18]],"date-time":"2017-06-18T00:00:00Z","timestamp":1497744000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2017,6,18]]},"DOI":"10.1145\/3061639.3062259","type":"proceedings-article","created":{"date-parts":[[2017,6,13]],"date-time":"2017-06-13T12:18:42Z","timestamp":1497356322000},"source":"Crossref","is-referenced-by-count":36,"title":["Hardware-Software Codesign of Accurate, Multiplier-free Deep Neural Networks"],"prefix":"10.1145","author":[{"given":"Hokchhay","family":"Tann","sequence":"first","affiliation":[{"name":"School of Engineering, Brown University, Providence RI"}]},{"given":"Soheil","family":"Hashemi","sequence":"additional","affiliation":[{"name":"School of Engineering, Brown University, Providence RI"}]},{"given":"R. Iris","family":"Bahar","sequence":"additional","affiliation":[{"name":"School of Engineering, Brown University, Providence RI"}]},{"given":"Sherief","family":"Reda","sequence":"additional","affiliation":[{"name":"School of Engineering, Brown University, Providence RI"}]}],"member":"320","published-online":{"date-parts":[[2017,6,18]]},"reference":[{"key":"e_1_3_2_1_1_1","first-page":"2654","volume-title":"NIPS","author":"Ba J.","year":"2014"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/1150402.1150464"},{"key":"e_1_3_2_1_3_1","doi-asserted-by":"publisher","DOI":"10.1145\/2541940.2541967"},{"key":"e_1_3_2_1_4_1","unstructured":"M. Courbariaux Y. Bengio and J.-P. David. Low precision arithmetic for deep learning. arXiv preprint arXiv:1412.7024 2014. M. Courbariaux Y. Bengio and J.-P. David. Low precision arithmetic for deep learning. arXiv preprint arXiv:1412.7024 2014."},{"key":"e_1_3_2_1_5_1","unstructured":"M. Courbariaux I. Hubara D. Soudry R. El-Yaniv and Y. Bengio. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. ArXiv preprint arXiv:1602.02830 Feb. 2016. M. Courbariaux I. Hubara D. Soudry R. El-Yaniv and Y. Bengio. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. ArXiv preprint arXiv:1602.02830 Feb. 2016."},{"key":"e_1_3_2_1_6_1","unstructured":"S. Gupta A. Agrawal K. Gopalakrishnan and P. Narayanan. Deep learning with limited numerical precision. CoRR abs\/1502.02551 2015. S. Gupta A. Agrawal K. Gopalakrishnan and P. Narayanan. Deep learning with limited numerical precision. CoRR abs\/1502.02551 2015."},{"key":"e_1_3_2_1_7_1","unstructured":"P. Gysel. Ristretto: Hardware-oriented approximation of convolutional neural networks. CoRR abs\/1605.06402 2016. P. Gysel. Ristretto: Hardware-oriented approximation of convolutional neural networks. CoRR abs\/1605.06402 2016."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.5555\/3130379.3130725"},{"key":"e_1_3_2_1_9_1","unstructured":"G. Hinton O. Vinyals and J. Dean. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2015. G. Hinton O. Vinyals and J. Dean. Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 2015."},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/SiPS.2014.6986082"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"crossref","unstructured":"Y. Jia E. Shelhamer J. Donahue S. Karayev J. Long R. Girshick S. Guadarrama and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 2014. Y. Jia E. Shelhamer J. Donahue S. Karayev J. Long R. Girshick S. Guadarrama and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 2014.","DOI":"10.1145\/2647868.2654889"},{"key":"e_1_3_2_1_12_1","volume-title":"University of Toronto","author":"Krizhevsky A.","year":"2009"},{"key":"e_1_3_2_1_13_1","volume-title":"Proc. NIPS","author":"Krizhevsky A.","year":"2012"},{"key":"e_1_3_2_1_14_1","unstructured":"A. Romero N. Ballas S. E. Kahou A. Chassang C. Gatta and Y. Bengio. Fitnets: Hints for thin deep nets. CoRR abs\/1412.6550 2014. A. Romero N. Ballas S. E. Kahou A. Chassang C. Gatta and Y. Bengio. Fitnets: Hints for thin deep nets. CoRR abs\/1412.6550 2014."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-015-0816-y"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/ASAP.2009.25"},{"key":"e_1_3_2_1_17_1","unstructured":"S. S. Sarwar S. Venkataramani A. Raghunathan and K. Roy. Multiplier-less artificial neurons exploiting error resiliency for energy-efficient neural computing. CoRR abs\/1602.08557 2016. S. S. Sarwar S. Venkataramani A. Raghunathan and K. Roy. Multiplier-less artificial neurons exploiting error resiliency for energy-efficient neural computing. CoRR abs\/1602.08557 2016."},{"key":"e_1_3_2_1_18_1","first-page":"963","volume-title":"Proc. NIPS","author":"Soudry D.","year":"2014"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/78.229903"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"crossref","unstructured":"H. Tann S. Hashemi R. I. Bahar and S. Reda. Runtime configurable deep neural networks for energy-accuracy trade-off. CoRR abs\/1607.05418 2016. H. Tann S. Hashemi R. I. Bahar and S. Reda. Runtime configurable deep neural networks for energy-accuracy trade-off. CoRR abs\/1607.05418 2016.","DOI":"10.1145\/2968456.2968458"},{"key":"e_1_3_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1145\/2684746.2689060"}],"event":{"name":"DAC '17: The 54th Annual Design Automation Conference 2017","location":"Austin TX USA","acronym":"DAC '17","sponsor":["EDAC Electronic Design Automation Consortium","SIGDA ACM Special Interest Group on Design Automation","IEEE-CEDA","SIGBED ACM Special Interest Group on Embedded Systems"]},"container-title":["Proceedings of the 54th Annual Design Automation Conference 2017"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3061639.3062259","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,12,16]],"date-time":"2020-12-16T15:52:14Z","timestamp":1608133934000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3061639.3062259"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,6,18]]},"references-count":21,"alternative-id":["10.1145\/3061639.3062259","10.1145\/3061639"],"URL":"http:\/\/dx.doi.org\/10.1145\/3061639.3062259","relation":{},"published":{"date-parts":[[2017,6,18]]}}}