{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,5,31]],"date-time":"2023-05-31T22:55:14Z","timestamp":1685573714107},"publisher-location":"New York, NY, USA","reference-count":82,"publisher":"ACM","license":[{"start":{"date-parts":[[2018,10,14]],"date-time":"2018-10-14T00:00:00Z","timestamp":1539475200000},"content-version":"vor","delay-in-days":365,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"name":"Syracuse University"},{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["CNS-1739748, CNS-1704662, CNS-1337300, CRII-1657333, CCF-1717754, CNS-1717984"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2017,10,14]]},"DOI":"10.1145\/3123939.3124552","type":"proceedings-article","created":{"date-parts":[[2017,11,20]],"date-time":"2017-11-20T14:31:12Z","timestamp":1511188272000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":120,"title":["C\n ir<\/scp>\n CNN"],"prefix":"10.1145","author":[{"given":"Caiwen","family":"Ding","sequence":"first","affiliation":[{"name":"Syracuse University"}]},{"given":"Siyu","family":"Liao","sequence":"additional","affiliation":[{"name":"City University of New York"}]},{"given":"Yanzhi","family":"Wang","sequence":"additional","affiliation":[{"name":"Syracuse University"}]},{"given":"Zhe","family":"Li","sequence":"additional","affiliation":[{"name":"Syracuse University"}]},{"given":"Ning","family":"Liu","sequence":"additional","affiliation":[{"name":"Syracuse University"}]},{"given":"Youwei","family":"Zhuo","sequence":"additional","affiliation":[{"name":"University of Southern California"}]},{"given":"Chao","family":"Wang","sequence":"additional","affiliation":[{"name":"University of Southern California"}]},{"given":"Xuehai","family":"Qian","sequence":"additional","affiliation":[{"name":"University of Southern California"}]},{"given":"Yu","family":"Bai","sequence":"additional","affiliation":[{"name":"California State University Fullerton"}]},{"given":"Geng","family":"Yuan","sequence":"additional","affiliation":[{"name":"Syracuse University"}]},{"given":"Xiaolong","family":"Ma","sequence":"additional","affiliation":[{"name":"Syracuse University"}]},{"given":"Yipeng","family":"Zhang","sequence":"additional","affiliation":[{"name":"Syracuse University"}]},{"given":"Jian","family":"Tang","sequence":"additional","affiliation":[{"name":"Syracuse University"}]},{"given":"Qinru","family":"Qiu","sequence":"additional","affiliation":[{"name":"Syracuse University"}]},{"given":"Xue","family":"Lin","sequence":"additional","affiliation":[{"name":"Northeastern University"}]},{"given":"Bo","family":"Yuan","sequence":"additional","affiliation":[{"name":"City University of New York"}]}],"member":"320","published-online":{"date-parts":[[2017,10,14]]},"reference":[{"key":"e_1_3_2_1_1_1","first-page":"248","volume-title":"CVPR 2009. IEEE Conference on","author":"Deng J.","year":"2009","unstructured":"J. Deng , W. Dong , R. Socher , L.-J. Li , K. Li , and L. Fei-Fei , \" Imagenet: A large-scale hierarchical image database,\" in Computer Vision and Pattern Recognition, 2009 . CVPR 2009. IEEE Conference on , pp. 248 -- 255 , IEEE, 2009 . J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, \"Imagenet: A large-scale hierarchical image database,\" in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 248--255, IEEE, 2009."},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.220"},{"key":"e_1_3_2_1_3_1","volume-title":"An empirical evaluation of deep learning on highway driving,\" arXiv preprint arXiv:1504.01716","author":"Huval B.","year":"2015","unstructured":"B. Huval , T. Wang , S. Tandon , J. Kiske , W. Song , J. Pazhayampallil , M. Andriluka , P. Rajpurkar , T. Migimatsu , R. Cheng-Yue , , \" An empirical evaluation of deep learning on highway driving,\" arXiv preprint arXiv:1504.01716 , 2015 . B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, et al., \"An empirical evaluation of deep learning on highway driving,\" arXiv preprint arXiv:1504.01716, 2015."},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/1390156.1390177"},{"key":"e_1_3_2_1_5_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0097-8485(01)00094-8"},{"key":"e_1_3_2_1_6_1","first-page":"1097","volume-title":"Imagenet classification with deep convolutional neural networks,\" in Advances in neural information processing systems","author":"Krizhevsky A.","year":"2012","unstructured":"A. Krizhevsky , I. Sutskever , and G. E. Hinton , \" Imagenet classification with deep convolutional neural networks,\" in Advances in neural information processing systems , pp. 1097 -- 1105 , 2012 . A. Krizhevsky, I. Sutskever, and G. E. Hinton, \"Imagenet classification with deep convolutional neural networks,\" in Advances in neural information processing systems, pp. 1097--1105, 2012."},{"key":"e_1_3_2_1_7_1","first-page":"3128","article-title":"Deep visual-semantic alignments for generating image descriptions","author":"Karpathy A.","year":"2015","unstructured":"A. Karpathy and L. Fei-Fei , \" Deep visual-semantic alignments for generating image descriptions ,\" in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , pp. 3128 -- 3137 , 2015 . A. Karpathy and L. Fei-Fei, \"Deep visual-semantic alignments for generating image descriptions,\" in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3128--3137, 2015.","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"e_1_3_2_1_8_1","unstructured":"B. Catanzaro \"Deep learning with cots hpc systems \" 2013. B. Catanzaro \"Deep learning with cots hpc systems \" 2013."},{"key":"e_1_3_2_1_9_1","volume-title":"Very deep convolutional networks for large-scale image recognition,\" arXiv preprint arXiv:1409.1556","author":"Simonyan K.","year":"2014","unstructured":"K. Simonyan and A. Zisserman , \" Very deep convolutional networks for large-scale image recognition,\" arXiv preprint arXiv:1409.1556 , 2014 . K. Simonyan and A. Zisserman, \"Very deep convolutional networks for large-scale image recognition,\" arXiv preprint arXiv:1409.1556, 2014."},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2013.6639343"},{"key":"e_1_3_2_1_11_1","first-page":"3642","volume-title":"2012 IEEE Conference on","author":"Ciregan D.","year":"2012","unstructured":"D. Ciregan , U. Meier , and J. Schmidhuber , \" Multi-column deep neural networks for image classification,\" in Computer Vision and Pattern Recognition (CVPR) , 2012 IEEE Conference on , pp. 3642 -- 3649 , IEEE, 2012 . D. Ciregan, U. Meier, and J. Schmidhuber, \"Multi-column deep neural networks for image classification,\" in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 3642--3649, IEEE, 2012."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2014.09.003"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1145\/2847263.2847276"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/2847263.2847265"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/2966986.2967011"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/2934583.2934644"},{"key":"e_1_3_2_1_17_1","first-page":"14","volume-title":"2016 IEEE International Symposium on","author":"Mahajan D.","year":"2016","unstructured":"D. Mahajan , J. Park , E. Amaro , H. Sharma , A. Yazdanbakhsh , J. K. Kim , and H. Esmaeilzadeh , \" Tabla: A unified template-based framework for accelerating statistical machine learning,\" in High Performance Computer Architecture (HPCA) , 2016 IEEE International Symposium on , pp. 14 -- 26 , IEEE, 2016 . D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh, J. K. Kim, and H. Esmaeilzadeh, \"Tabla: A unified template-based framework for accelerating statistical machine learning,\" in High Performance Computer Architecture (HPCA), 2016 IEEE International Symposium on, pp. 14--26, IEEE, 2016."},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/3020078.3021741"},{"key":"e_1_3_2_1_19_1","doi-asserted-by":"publisher","DOI":"10.1145\/3020078.3021744"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/3020078.3021745"},{"key":"e_1_3_2_1_21_1","unstructured":"http:\/\/www.techradar.com\/news\/computing-components\/processors\/google-s-tensor-processing-unit-explained-this-is-what-the-future-of-\\computing-looks-like-1326915. http:\/\/www.techradar.com\/news\/computing-components\/processors\/google-s-tensor-processing-unit-explained-this-is-what-the-future-of-\\computing-looks-like-1326915."},{"key":"e_1_3_2_1_22_1","unstructured":"https:\/\/www.sdxcentral.com\/articles\/news\/intels-deep-learning-chips-will-arrive-2017\/2016\/11\/. https:\/\/www.sdxcentral.com\/articles\/news\/intels-deep-learning-chips-will-arrive-2017\/2016\/11\/."},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/JSSC.2016.2616357"},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA.2016.30"},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/2644865.2541967"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/MICRO.2014.58"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/2749469.2750389"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA.2016.32"},{"key":"e_1_3_2_1_29_1","first-page":"238","volume-title":"2017 IEEE International","author":"Desoli G.","year":"2017","unstructured":"G. Desoli , N. Chawla , T. Boesch , S.-p. Singh , E. Guidetti , F. De Ambroggi , T. Majo , P. Zambotti , M. Ayodhyawasi , H. Singh , 1 a 2.9 tops\/w deep convolutional neural network soc in fd-soi 28nm for intelligent embedded systems,\" in Solid-State Circuits Conference (ISSCC) , 2017 IEEE International , pp. 238 -- 239 , IEEE, 2017 . G. Desoli, N. Chawla, T. Boesch, S.-p. Singh, E. Guidetti, F. De Ambroggi, T. Majo, P. Zambotti, M. Ayodhyawasi, H. Singh, et al., \"14.1 a 2.9 tops\/w deep convolutional neural network soc in fd-soi 28nm for intelligent embedded systems,\" in Solid-State Circuits Conference (ISSCC), 2017 IEEE International, pp. 238--239, IEEE, 2017."},{"key":"e_1_3_2_1_30_1","first-page":"246","volume-title":"2017 IEEE International","author":"Moons B.","year":"2017","unstructured":"B. Moons , R. Uytterhoeven , W. Dehaene , and M. Verhelst , \" 14.5 envision: A 0.26-to-10tops\/w subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28nm fdsoi,\" in Solid-State Circuits Conference (ISSCC) , 2017 IEEE International , pp. 246 -- 247 , IEEE, 2017 . B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, \"14.5 envision: A 0.26-to-10tops\/w subword-parallel dynamic-voltage-accuracy-frequency-scalable convolutional neural network processor in 28nm fdsoi,\" in Solid-State Circuits Conference (ISSCC), 2017 IEEE International, pp. 246--247, IEEE, 2017."},{"key":"e_1_3_2_1_31_1","volume-title":"A 1.42 tops\/w deep convolutional neural network recognition processor for intelligent iot systems,\" in 2016 IEEE ISSCC","author":"Sim J.","year":"2016","unstructured":"J. Sim , J. Park , M. Kim , D. Bae , Y. Choi , and L. Kim , \" A 1.42 tops\/w deep convolutional neural network recognition processor for intelligent iot systems,\" in 2016 IEEE ISSCC , IEEE solid-state circuits society, 2016 . J. Sim, J. Park, M. Kim, D. Bae, Y. Choi, and L. Kim, \"A 1.42 tops\/w deep convolutional neural network recognition processor for intelligent iot systems,\" in 2016 IEEE ISSCC, IEEE solid-state circuits society, 2016."},{"key":"e_1_3_2_1_32_1","first-page":"242","volume-title":"2017 IEEE International","author":"Whatmough P. N.","year":"2017","unstructured":"P. N. Whatmough , S. K. Lee , H. Lee , S. Rama , D. Brooks , and G.-Y. Wei , \"14. 3 a 28nm soc with a 1.2 ghz 568nj\/prediction sparse deep-neural-network engine with> 0.1 timing error rate tolerance for iot applications,\" in Solid-State Circuits Conference (ISSCC) , 2017 IEEE International , pp. 242 -- 243 , IEEE, 2017 . P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G.-Y. Wei, \"14.3 a 28nm soc with a 1.2 ghz 568nj\/prediction sparse deep-neural-network engine with> 0.1 timing error rate tolerance for iot applications,\" in Solid-State Circuits Conference (ISSCC), 2017 IEEE International, pp. 242--243, IEEE, 2017."},{"key":"e_1_3_2_1_33_1","first-page":"250","volume-title":"2017 IEEE International","author":"Bang S.","year":"2017","unstructured":"S. Bang , J. Wang , Z. Li , C. Gao , Y. Kim , Q. Dong , Y.-P. Chen , L. Fick , X. Sun , R. Dreslinski , 7 a 288μw programmable deep-learning processor with 270kb on-chip weight storage using non-uniform memory hierarchy for mobile intelligence,\" in Solid-State Circuits Conference (ISSCC) , 2017 IEEE International , pp. 250 -- 251 , IEEE, 2017 . S. Bang, J. Wang, Z. Li, C. Gao, Y. Kim, Q. Dong, Y.-P. Chen, L. Fick, X. Sun, R. Dreslinski, et al., \"14.7 a 288μw programmable deep-learning processor with 270kb on-chip weight storage using non-uniform memory hierarchy for mobile intelligence,\" in Solid-State Circuits Conference (ISSCC), 2017 IEEE International, pp. 250--251, IEEE, 2017."},{"key":"e_1_3_2_1_34_1","first-page":"1135","volume-title":"Learning both weights and connections for efficient neural network,\" in Advances in Neural Information Processing Systems","author":"Han S.","year":"2015","unstructured":"S. Han , J. Pool , J. Tran , and W. Dally , \" Learning both weights and connections for efficient neural network,\" in Advances in Neural Information Processing Systems , pp. 1135 -- 1143 , 2015 . S. Han, J. Pool, J. Tran, and W. Dally, \"Learning both weights and connections for efficient neural network,\" in Advances in Neural Information Processing Systems, pp. 1135--1143, 2015."},{"key":"e_1_3_2_1_35_1","volume-title":"Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding,\" arXiv preprint arXiv.1510.00149","author":"Han S.","year":"2015","unstructured":"S. Han , H. Mao , and W. J. Dally , \" Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding,\" arXiv preprint arXiv.1510.00149 , 2015 . S. Han, H. Mao, and W. J. Dally, \"Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding,\" arXiv preprint arXiv.1510.00149, 2015."},{"key":"e_1_3_2_1_36_1","volume-title":"CVPR 2016. IEEE Conference on","author":"Wu J.","year":"2016","unstructured":"J. Wu , C. Leng , Y. Wang , Q. Hu , and J. Chen , \" Quantized convolutional neural networks for mobile devices,\" in Computer Vision and Pattern Recognition, 2016 . CVPR 2016. IEEE Conference on , 2016 . J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Chen, \"Quantized convolutional neural networks for mobile devices,\" in Computer Vision and Pattern Recognition, 2016. CVPR 2016. IEEE Conference on, 2016."},{"key":"e_1_3_2_1_37_1","first-page":"2849","volume-title":"Fixed point quantization of deep convolutional networks,\" in International Conference on Machine Learning","author":"Lin D.","year":"2016","unstructured":"D. Lin , S. Talathi , and S. Annapureddy , \" Fixed point quantization of deep convolutional networks,\" in International Conference on Machine Learning , pp. 2849 -- 2858 , 2016 . D. Lin, S. Talathi, and S. Annapureddy, \"Fixed point quantization of deep convolutional networks,\" in International Conference on Machine Learning, pp. 2849--2858, 2016."},{"key":"e_1_3_2_1_38_1","volume-title":"Speeding up convolutional neural networks with low rank expansions,\" arXiv preprint arXiv.1405.3866","author":"Jaderberg M.","year":"2014","unstructured":"M. Jaderberg , A. Vedaldi , and A. Zisserman , \" Speeding up convolutional neural networks with low rank expansions,\" arXiv preprint arXiv.1405.3866 , 2014 . M. Jaderberg, A. Vedaldi, and A. Zisserman, \"Speeding up convolutional neural networks with low rank expansions,\" arXiv preprint arXiv.1405.3866, 2014."},{"key":"e_1_3_2_1_39_1","volume-title":"Convolutional neural networks with low-rank regularization,\" arXiv preprint arXiv:1511.06067","author":"Tai C.","year":"2015","unstructured":"C. Tai , T. Xiao , Y. Zhang , X. Wang , , \" Convolutional neural networks with low-rank regularization,\" arXiv preprint arXiv:1511.06067 , 2015 . C. Tai, T. Xiao, Y. Zhang, X. Wang, et al., \"Convolutional neural networks with low-rank regularization,\" arXiv preprint arXiv:1511.06067, 2015."},{"key":"e_1_3_2_1_40_1","doi-asserted-by":"publisher","DOI":"10.1145\/3079856.3080215"},{"key":"e_1_3_2_1_41_1","volume-title":"Structured matrices and polynomials: unified superfast algorithms","author":"Pan V.","year":"2012","unstructured":"V. Pan , Structured matrices and polynomials: unified superfast algorithms . Springer Science & Business Media , 2012 . V. Pan, Structured matrices and polynomials: unified superfast algorithms. Springer Science & Business Media, 2012."},{"key":"e_1_3_2_1_42_1","unstructured":"https:\/\/drive.google.com\/open?id=0B19XkzlgXlwAYjVjWClKc2xSRm8. https:\/\/drive.google.com\/open?id=0B19XkzlgXlwAYjVjWClKc2xSRm8."},{"key":"e_1_3_2_1_43_1","volume-title":"Theoretical properties for neural networks with weight matrices of low displacement rank,\" arXiv preprint arXiv.1703.00144","author":"Zhao L.","year":"2017","unstructured":"L. Zhao , S. Liao , Y. Wang , J. Tang , and B. Yuan , \" Theoretical properties for neural networks with weight matrices of low displacement rank,\" arXiv preprint arXiv.1703.00144 , 2017 . L. Zhao, S. Liao, Y. Wang, J. Tang, and B. Yuan, \"Theoretical properties for neural networks with weight matrices of low displacement rank,\" arXiv preprint arXiv.1703.00144, 2017."},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1145\/1553374.1553453"},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.223"},{"key":"e_1_3_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2010.939038"},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"e_1_3_2_1_48_1","first-page":"2365","volume-title":"Restructuring of deep neural network acoustic models with singular value decomposition.\" in Interspeech","author":"Xue J.","year":"2013","unstructured":"J. Xue , J. Li , and Y. Gong , \" Restructuring of deep neural network acoustic models with singular value decomposition.\" in Interspeech , pp. 2365 -- 2369 , 2013 . J. Xue, J. Li, and Y. Gong, \"Restructuring of deep neural network acoustic models with singular value decomposition.\" in Interspeech, pp. 2365--2369, 2013."},{"key":"e_1_3_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1145\/2742060.2743754"},{"key":"e_1_3_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1145\/2897937.2898092"},{"key":"e_1_3_2_1_51_1","first-page":"1","volume-title":"2014 IEEE Workshop on","author":"Hwang K.","year":"2014","unstructured":"K. Hwang and W. Sung , \" Fixed-point feedforward deep neural network design using weights+ 1, 0, and- 1,\" in Signal Processing Systems (SiPS) , 2014 IEEE Workshop on , pp. 1 -- 6 , IEEE, 2014 . K. Hwang and W. Sung, \"Fixed-point feedforward deep neural network design using weights+ 1, 0, and- 1,\" in Signal Processing Systems (SiPS), 2014 IEEE Workshop on, pp. 1--6, IEEE, 2014."},{"key":"e_1_3_2_1_52_1","unstructured":"M. Mathieu M. Henaff and Y. LeCun \"Fast training of convolutional networks through ffts \" arXiv preprint arXiv.1312.5851 2013. M. Mathieu M. Henaff and Y. LeCun \"Fast training of convolutional networks through ffts \" arXiv preprint arXiv.1312.5851 2013."},{"key":"e_1_3_2_1_53_1","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He K.","year":"2016","unstructured":"K. He , X. Zhang , S. Ren , and J. Sun , \" Deep residual learning for image recognition ,\" in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition , pp. 770 -- 778 , 2016 . K. He, X. Zhang, S. Ren, and J. Sun, \"Deep residual learning for image recognition,\" in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770--778, 2016.","journal-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition"},{"key":"e_1_3_2_1_54_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.327"},{"key":"e_1_3_2_1_55_1","doi-asserted-by":"publisher","DOI":"10.5555\/184671"},{"key":"e_1_3_2_1_56_1","doi-asserted-by":"publisher","DOI":"10.1145\/2647868.2654889"},{"key":"e_1_3_2_1_57_1","doi-asserted-by":"publisher","DOI":"10.1145\/2733373.2807412"},{"key":"e_1_3_2_1_58_1","doi-asserted-by":"publisher","DOI":"10.1016\/S0166-8641(96)00142-3"},{"key":"e_1_3_2_1_59_1","volume-title":"Reading digits in natural images with unsupervised feature learning,\" in NIPS workshop on deep learning and unsupervised feature learning","author":"Netzer Y.","year":"2011","unstructured":"Y. Netzer , T. Wang , A. Coates , A. Bissacco , B. Wu , and A. Y. Ng , \" Reading digits in natural images with unsupervised feature learning,\" in NIPS workshop on deep learning and unsupervised feature learning , vol. 2011 , p. 5, 2011 . Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, \"Reading digits in natural images with unsupervised feature learning,\" in NIPS workshop on deep learning and unsupervised feature learning, vol. 2011, p. 5, 2011."},{"key":"e_1_3_2_1_60_1","volume-title":"Learning multiple layers of features from tiny images","author":"Krizhevsky A.","year":"2009","unstructured":"A. Krizhevsky and G. Hinton , \" Learning multiple layers of features from tiny images ,\" 2009 . A. Krizhevsky and G. Hinton, \"Learning multiple layers of features from tiny images,\" 2009."},{"issue":"48109","key":"e_1_3_2_1_61_1","first-page":"2","article-title":"An analysis of single-layer networks in unsupervised feature learning","volume":"1001","author":"Coates A.","year":"2010","unstructured":"A. Coates , H. Lee , and A. Y. Ng , \" An analysis of single-layer networks in unsupervised feature learning ,\" Ann Arbor , vol. 1001 , no. 48109 , p. 2 , 2010 . A. Coates, H. Lee, and A. Y. Ng, \"An analysis of single-layer networks in unsupervised feature learning,\" Ann Arbor, vol. 1001, no. 48109, p. 2, 2010.","journal-title":"Ann Arbor"},{"key":"e_1_3_2_1_62_1","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2012.2211477"},{"key":"e_1_3_2_1_63_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCSII.2013.2268411"},{"key":"e_1_3_2_1_64_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCSII.2003.811439"},{"key":"e_1_3_2_1_65_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCSII.2007.901635"},{"key":"e_1_3_2_1_66_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCSI.2009.2017125"},{"key":"e_1_3_2_1_67_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCSII.2013.2273841"},{"key":"e_1_3_2_1_68_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCSI.2013.2246251"},{"key":"e_1_3_2_1_69_1","volume-title":"Pearson Education India","author":"Oppenheim A. V.","year":"1999","unstructured":"A. V. Oppenheim , Discrete-time signal processing . Pearson Education India , 1999 . A. V. Oppenheim, Discrete-time signal processing. Pearson Education India, 1999."},{"key":"e_1_3_2_1_70_1","unstructured":"Altera \"Fft mega-core function user guide \" Altera San Jose Calif USA 2010. Altera \"Fft mega-core function user guide \" Altera San Jose Calif USA 2010."},{"key":"e_1_3_2_1_71_1","first-page":"1","volume-title":"2016 49th Annual IEEE\/ACM International Symposium on","author":"Judd P.","year":"2016","unstructured":"P. Judd , J. Albericio , T. Hetherington , T. M. Aamodt , and A. Moshovos , \" Stripes: Bit-serial deep neural network computing,\" in Microarchitecture (MICRO) , 2016 49th Annual IEEE\/ACM International Symposium on , pp. 1 -- 12 , IEEE, 2016 . P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos, \"Stripes: Bit-serial deep neural network computing,\" in Microarchitecture (MICRO), 2016 49th Annual IEEE\/ACM International Symposium on, pp. 1--12, IEEE, 2016."},{"key":"e_1_3_2_1_72_1","unstructured":"https:\/\/www.altera.com\/products\/fpga\/stratix-series\/stratix-10\/overview.html. https:\/\/www.altera.com\/products\/fpga\/stratix-series\/stratix-10\/overview.html."},{"key":"e_1_3_2_1_73_1","unstructured":"https:\/\/www.xilinx.com\/products\/silicon-devices\/fpga\/virtex-7.html. https:\/\/www.xilinx.com\/products\/silicon-devices\/fpga\/virtex-7.html."},{"key":"e_1_3_2_1_74_1","doi-asserted-by":"publisher","DOI":"10.1145\/2024724.2024935"},{"key":"e_1_3_2_1_75_1","doi-asserted-by":"publisher","DOI":"10.1145\/1366110.1366200"},{"key":"e_1_3_2_1_76_1","doi-asserted-by":"publisher","DOI":"10.1145\/285930.285998"},{"key":"e_1_3_2_1_77_1","doi-asserted-by":"publisher","DOI":"10.1145\/263580.263597"},{"key":"e_1_3_2_1_78_1","volume-title":"Cmos vlsi design,\" A circuits and systems perspective","author":"Weste N.","year":"2005","unstructured":"N. Weste , D. Harris , and A. Banerjee , \" Cmos vlsi design,\" A circuits and systems perspective , vol. 11 , p. 739, 2005 . N. Weste, D. Harris, and A. Banerjee, \"Cmos vlsi design,\" A circuits and systems perspective, vol. 11, p. 739, 2005."},{"key":"e_1_3_2_1_79_1","first-page":"201604850","article-title":"Convolutional networks for fast, energy-efficient neuromorphic computing","author":"Esser S. K.","year":"2016","unstructured":"S. K. Esser , P. A. Merolla , J. V. Arthur , A.S. Cassidy , R. Appuswamy , A. Andreopoulos , D. J. Berg , J. L. McKinstry , T. Melano , D. R. Barch , , \" Convolutional networks for fast, energy-efficient neuromorphic computing ,\" Proceedings of the National Academy of Sciences , p. 201604850 , 2016 . S. K. Esser, P. A. Merolla, J. V. Arthur, A.S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch, et al., \"Convolutional networks for fast, energy-efficient neuromorphic computing,\" Proceedings of the National Academy of Sciences, p. 201604850, 2016.","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"e_1_3_2_1_80_1","first-page":"1117","volume-title":"Backpropagation for energy-efficient neuromorphic computing,\" in Advances in Neural Information Processing Systems","author":"Esser S. K.","year":"2015","unstructured":"S. K. Esser , R. Appuswamy , P. Merolla , J. V. Arthur , and D. S. Modha , \" Backpropagation for energy-efficient neuromorphic computing,\" in Advances in Neural Information Processing Systems , pp. 1117 -- 1125 , 2015 . S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha, \"Backpropagation for energy-efficient neuromorphic computing,\" in Advances in Neural Information Processing Systems, pp. 1117--1125, 2015."},{"key":"e_1_3_2_1_81_1","unstructured":"http:\/\/www.nangate.com\/?page_id=22. http:\/\/www.nangate.com\/?page_id=22."},{"key":"e_1_3_2_1_82_1","unstructured":"http:\/\/quid.hpl.hp.com:9081\/cacti\/. http:\/\/quid.hpl.hp.com:9081\/cacti\/."}],"event":{"name":"MICRO-50: The 50th Annual IEEE\/ACM International Symposium on Microarchitecture","location":"Cambridge Massachusetts","acronym":"MICRO-50","sponsor":["SIGMICRO ACM Special Interest Group on Microarchitectural Research and Processing","IEEE-CS\\DATC IEEE Computer Society"]},"container-title":["Proceedings of the 50th Annual IEEE\/ACM International Symposium on Microarchitecture"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3123939.3124552","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3123939.3124552","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,8]],"date-time":"2023-01-08T19:49:48Z","timestamp":1673207388000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3123939.3124552"}},"subtitle":["accelerating and compressing deep neural networks using block-circulant weight matrices"],"short-title":[],"issued":{"date-parts":[[2017,10,14]]},"references-count":82,"alternative-id":["10.1145\/3123939.3124552","10.1145\/3123939"],"URL":"http:\/\/dx.doi.org\/10.1145\/3123939.3124552","relation":{},"published":{"date-parts":[[2017,10,14]]},"assertion":[{"value":"2017-10-14","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}