{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,4,25]],"date-time":"2023-04-25T14:03:45Z","timestamp":1682431425385},"publisher-location":"New York, NY, USA","reference-count":48,"publisher":"ACM","license":[{"start":{"date-parts":[[2019,2,2]],"date-time":"2019-02-02T00:00:00Z","timestamp":1549065600000},"content-version":"vor","delay-in-days":365,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"funder":[{"name":"EPSRC","award":["L026015"]},{"DOI":"10.13039\/100000001","name":"NSF","doi-asserted-by":"publisher","award":["61572223"]}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2018,2,2]]},"DOI":"10.1145\/3159652.3159695","type":"proceedings-article","created":{"date-parts":[[2018,2,6]],"date-time":"2018-02-06T18:12:23Z","timestamp":1517940743000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":13,"title":["Improving Negative Sampling for Word Representation using Self-embedded Features"],"prefix":"10.1145","author":[{"given":"Long","family":"Chen","sequence":"first","affiliation":[{"name":"University of Glasgow, Glasgow, United Kingdom"}]},{"given":"Fajie","family":"Yuan","sequence":"additional","affiliation":[{"name":"University of Glasgow, Glasgow, United Kingdom"}]},{"given":"Joemon M.","family":"Jose","sequence":"additional","affiliation":[{"name":"University of Glasgow, Glasgow, United Kingdom"}]},{"given":"Weinan","family":"Zhang","sequence":"additional","affiliation":[{"name":"Shanghai Jiao Tong University, Shang Hai, China"}]}],"member":"320","published-online":{"date-parts":[[2018,2,2]]},"reference":[{"key":"e_1_3_2_2_1_1","volume-title":"Word embeddings via tensor factorization. arXiv preprint arXiv:1704.02686","author":"Bailey Eric","year":"2017","unstructured":"Eric Bailey and Shuchin Aeron . Word embeddings via tensor factorization. arXiv preprint arXiv:1704.02686 , 2017 . Eric Bailey and Shuchin Aeron. Word embeddings via tensor factorization. arXiv preprint arXiv:1704.02686, 2017."},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/P14-1023"},{"key":"e_1_3_2_2_3_1","volume-title":"A neural probabilistic language model. Journal of machine learning research, 3(Feb):1137-- 1155","author":"Bengio Yoshua","year":"2003","unstructured":"Yoshua Bengio , R\u00e9jean Ducharme , Pascal Vincent , and Christian Jauvin . A neural probabilistic language model. Journal of machine learning research, 3(Feb):1137-- 1155 , 2003 . Yoshua Bengio, R\u00e9jean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic language model. Journal of machine learning research, 3(Feb):1137-- 1155, 2003."},{"key":"e_1_3_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.1145\/2484028.2484129"},{"key":"e_1_3_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1145\/1390156.1390177"},{"key":"e_1_3_2_2_6_1","volume-title":"Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(Aug):2493--2537","author":"Collobert Ronan","year":"2011","unstructured":"Ronan Collobert , Jason Weston , L\u00e9on Bottou , Michael Karlen , Koray Kavukcuoglu , and Pavel Kuksa . Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(Aug):2493--2537 , 2011 . Ronan Collobert, Jason Weston, L\u00e9on Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Research, 12(Aug):2493--2537, 2011."},{"key":"e_1_3_2_2_7_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/P14-5004"},{"key":"e_1_3_2_2_8_1","first-page":"945","volume-title":"Proceedings of the 28th International Conference on Machine Learning (ICML-11)","author":"Glorot Xavier","year":"2011","unstructured":"Xavier Glorot , Yoshua Bengio , and Yann N Dauphin . Large-scale learning of embeddings with reconstruction sampling . In Proceedings of the 28th International Conference on Machine Learning (ICML-11) , pages 945 -- 952 , 2011 . Xavier Glorot, Yoshua Bengio, and Yann N Dauphin. Large-scale learning of embeddings with reconstruction sampling. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 945--952, 2011."},{"key":"e_1_3_2_2_9_1","volume-title":"word2vec explained: Deriving mikolov et al.'s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722","author":"Goldberg Yoav","year":"2014","unstructured":"Yoav Goldberg and Omer Levy . word2vec explained: Deriving mikolov et al.'s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722 , 2014 . Yoav Goldberg and Omer Levy. word2vec explained: Deriving mikolov et al.'s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014."},{"key":"e_1_3_2_2_10_1","first-page":"6","volume-title":"AISTATS","volume":"1","author":"Gutmann Michael","year":"2010","unstructured":"Michael Gutmann and Aapo Hyv\u00e4rinen . Noise-contrastive estimation : A new estimation principle for unnormalized statistical models . In AISTATS , volume 1 , page 6 , 2010 . Michael Gutmann and Aapo Hyv\u00e4rinen. Noise-contrastive estimation: A new estimation principle for unnormalized statistical models. In AISTATS, volume 1, page 6, 2010."},{"key":"e_1_3_2_2_11_1","volume-title":"Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. Journal of Machine Learning Research, 13(Feb):307--361","author":"Gutmann Michael U","year":"2012","unstructured":"Michael U Gutmann and Aapo Hyv\u00e4rinen . Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. Journal of Machine Learning Research, 13(Feb):307--361 , 2012 . Michael U Gutmann and Aapo Hyv\u00e4rinen. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. Journal of Machine Learning Research, 13(Feb):307--361, 2012."},{"key":"e_1_3_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1145\/2911451.2911489"},{"key":"e_1_3_2_2_13_1","volume-title":"How to evaluate word embeddings? on importance of data efficiency and simple supervised tasks. arXiv preprint arXiv:1702.02170","author":"Jastrzebski Stanis\u0131aw","year":"2017","unstructured":"Stanis\u0131aw Jastrzebski , Damian Le\u015bniak , and Wojciech Marian Czarnecki . How to evaluate word embeddings? on importance of data efficiency and simple supervised tasks. arXiv preprint arXiv:1702.02170 , 2017 . Stanis\u0131aw Jastrzebski, Damian Le\u015bniak, and Wojciech Marian Czarnecki. How to evaluate word embeddings? on importance of data efficiency and simple supervised tasks. arXiv preprint arXiv:1702.02170, 2017."},{"key":"e_1_3_2_2_14_1","volume-title":"Wordrank: Learning word embeddings via robust ranking. arXiv preprint arXiv:1506.02761","author":"Ji Shihao","year":"2015","unstructured":"Shihao Ji , Hyokun Yun , Pinar Yanardag , Shin Matsushima , and SVN Vishwanathan . Wordrank: Learning word embeddings via robust ranking. arXiv preprint arXiv:1506.02761 , 2015 . Shihao Ji, Hyokun Yun, Pinar Yanardag, Shin Matsushima, and SVN Vishwanathan. Wordrank: Learning word embeddings via robust ranking. arXiv preprint arXiv:1506.02761, 2015."},{"key":"e_1_3_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.5555\/3016100.3016285"},{"key":"e_1_3_2_2_16_1","first-page":"1188","volume-title":"Proceedings of the 31st International Conference on Machine Learning (ICML-14)","author":"Le Quoc","year":"2014","unstructured":"Quoc Le and Tomas Mikolov . Distributed representations of sentences and documents . In Proceedings of the 31st International Conference on Machine Learning (ICML-14) , pages 1188 -- 1196 , 2014 . Quoc Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceedings of the 31st International Conference on Machine Learning (ICML-14), pages 1188--1196, 2014."},{"key":"e_1_3_2_2_17_1","volume-title":"Word emdeddings through hellinger pca. arXiv preprint arXiv:1312.5542","author":"Lebret R\u00e9mi","year":"2013","unstructured":"R\u00e9mi Lebret and Ronan Collobert . Word emdeddings through hellinger pca. arXiv preprint arXiv:1312.5542 , 2013 . R\u00e9mi Lebret and Ronan Collobert. Word emdeddings through hellinger pca. arXiv preprint arXiv:1312.5542, 2013."},{"key":"e_1_3_2_2_18_1","first-page":"2177","volume-title":"Advances in neural information processing systems","author":"Levy Omer","year":"2014","unstructured":"Omer Levy and Yoav Goldberg . Neural word embedding as implicit matrix factorization . In Advances in neural information processing systems , pages 2177 -- 2185 , 2014 . Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix factorization. In Advances in neural information processing systems, pages 2177-- 2185, 2014."},{"key":"e_1_3_2_2_19_1","doi-asserted-by":"publisher","DOI":"10.1162\/tacl_a_00134"},{"key":"e_1_3_2_2_20_1","volume-title":"Addressing the rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206","author":"Luong Minh-Thang","year":"2014","unstructured":"Minh-Thang Luong , Ilya Sutskever , Quoc V Le , Oriol Vinyals , and Wojciech Zaremba . Addressing the rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206 , 2014 . Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals, and Wojciech Zaremba. Addressing the rare word problem in neural machine translation. arXiv preprint arXiv:1410.8206, 2014."},{"key":"e_1_3_2_2_21_1","doi-asserted-by":"publisher","DOI":"10.5555\/3104322.3104421"},{"key":"e_1_3_2_2_22_1","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/K16-1006"},{"key":"e_1_3_2_2_23_1","first-page":"3111","volume-title":"Advances in neural information processing systems","author":"Mikolov Tomas","year":"2013","unstructured":"Tomas Mikolov , Ilya Sutskever , Kai Chen , Greg S Corrado , and Jeff Dean . Distributed representations of words and phrases and their compositionality . In Advances in neural information processing systems , pages 3111 -- 3119 , 2013 . Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems, pages 3111--3119, 2013."},{"key":"e_1_3_2_2_24_1","volume-title":"Dependency recurrent neural language models for sentence completion. arXiv preprint arXiv:1507.01193","author":"Mirowski Piotr","year":"2015","unstructured":"Piotr Mirowski and Andreas Vlachos . Dependency recurrent neural language models for sentence completion. arXiv preprint arXiv:1507.01193 , 2015 . Piotr Mirowski and Andreas Vlachos. Dependency recurrent neural language models for sentence completion. arXiv preprint arXiv:1507.01193, 2015."},{"key":"e_1_3_2_2_25_1","first-page":"1081","volume-title":"Advances in neural information processing systems","author":"Mnih Andriy","year":"2009","unstructured":"Andriy Mnih and Geoffrey E Hinton . A scalable hierarchical distributed language model . In Advances in neural information processing systems , pages 1081 -- 1088 , 2009 . Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed language model. In Advances in neural information processing systems, pages 1081--1088, 2009."},{"key":"e_1_3_2_2_26_1","first-page":"2265","volume-title":"Advances in neural information processing systems","author":"Mnih Andriy","year":"2013","unstructured":"Andriy Mnih and Koray Kavukcuoglu . Learning word embeddings efficiently with noise-contrastive estimation . In Advances in neural information processing systems , pages 2265 -- 2273 , 2013 . Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive estimation. In Advances in neural information processing systems, pages 2265--2273, 2013."},{"key":"e_1_3_2_2_27_1","first-page":"246","volume-title":"Aistats","volume":"5","author":"Morin Frederic","year":"2005","unstructured":"Frederic Morin and Yoshua Bengio . Hierarchical probabilistic neural network language model . In Aistats , volume 5 , pages 246 -- 252 . Citeseer , 2005 . Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In Aistats, volume 5, pages 246--252. Citeseer, 2005."},{"key":"e_1_3_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10579-015-9328-1"},{"key":"e_1_3_2_2_29_1","volume-title":"Neural programmer: Inducing latent programs with gradient descent. arXiv preprint arXiv:1511.04834","author":"Neelakantan Arvind","year":"2015","unstructured":"Arvind Neelakantan , Quoc V Le , and Ilya Sutskever . Neural programmer: Inducing latent programs with gradient descent. arXiv preprint arXiv:1511.04834 , 2015 . Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing latent programs with gradient descent. arXiv preprint arXiv:1511.04834, 2015."},{"key":"e_1_3_2_2_30_1","volume-title":"Incrementally learning the hierarchical softmax function for neural language models","author":"Peng Hao","year":"2016","unstructured":"Hao Peng , Jianxin Li , Yangqiu Song , and Yaopeng Liu . Incrementally learning the hierarchical softmax function for neural language models . 2016 . Hao Peng, Jianxin Li, Yangqiu Song, and Yaopeng Liu. Incrementally learning the hierarchical softmax function for neural language models. 2016."},{"key":"e_1_3_2_2_31_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/D14-1162"},{"key":"e_1_3_2_2_32_1","doi-asserted-by":"publisher","DOI":"10.14778\/2535573.2488340"},{"key":"e_1_3_2_2_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/2556195.2556248"},{"key":"e_1_3_2_2_34_1","volume-title":"Matrix factorization using window sampling and negative sampling for improved word representations. arXiv preprint arXiv:1606.00819","author":"Salle Alexandre","year":"2016","unstructured":"Alexandre Salle , Marco Idiart , and Aline Villavicencio . Matrix factorization using window sampling and negative sampling for improved word representations. arXiv preprint arXiv:1606.00819 , 2016 . Alexandre Salle, Marco Idiart, and Aline Villavicencio. Matrix factorization using window sampling and negative sampling for improved word representations. arXiv preprint arXiv:1606.00819, 2016."},{"key":"e_1_3_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.3115\/1119176.1119195"},{"key":"e_1_3_2_2_36_1","first-page":"2321","volume-title":"Advances in Neural Information Processing Systems","author":"Shrivastava Anshumali","year":"2014","unstructured":"Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips) . In Advances in Neural Information Processing Systems , pages 2321 -- 2329 , 2014 . Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips). In Advances in Neural Information Processing Systems, pages 2321--2329, 2014."},{"key":"e_1_3_2_2_37_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/P14-1146"},{"key":"e_1_3_2_2_38_1","first-page":"151","volume-title":"COLING","author":"Tian Fei","year":"2014","unstructured":"Fei Tian , Hanjun Dai , Jiang Bian , Bin Gao , Rui Zhang , Enhong Chen , and Tie-Yan Liu . A probabilistic model for learning multi-prototype word embeddings . In COLING , pages 151 -- 160 , 2014 . Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, and Tie-Yan Liu. A probabilistic model for learning multi-prototype word embeddings. In COLING, pages 151--160, 2014."},{"key":"e_1_3_2_2_39_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02289464"},{"key":"e_1_3_2_2_40_1","volume-title":"From frequency to meaning: Vector space models of semantics. Journal of artificial intelligence research, 37:141--188","author":"Turney Peter D","year":"2010","unstructured":"Peter D Turney and Patrick Pantel . From frequency to meaning: Vector space models of semantics. Journal of artificial intelligence research, 37:141--188 , 2010 . Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics. Journal of artificial intelligence research, 37:141--188, 2010."},{"key":"e_1_3_2_2_41_1","volume-title":"Deep networks with large output spaces. arXiv preprint arXiv:1412.7479","author":"Vijayanarasimhan Sudheendra","year":"2014","unstructured":"Sudheendra Vijayanarasimhan , Jonathon Shlens , Rajat Monga , and Jay Yagnik . Deep networks with large output spaces. arXiv preprint arXiv:1412.7479 , 2014 . Sudheendra Vijayanarasimhan, Jonathon Shlens, Rajat Monga, and Jay Yagnik. Deep networks with large output spaces. arXiv preprint arXiv:1412.7479, 2014."},{"key":"e_1_3_2_2_42_1","first-page":"1108","volume-title":"Advances in Neural Information Processing Systems","author":"Vincent Pascal","year":"2015","unstructured":"Pascal Vincent , Alexandre de Br\u00e9bisson , and Xavier Bouthillier . Efficient exact gradient update for training deep networks with very large sparse targets . In Advances in Neural Information Processing Systems , pages 1108 -- 1116 , 2015 . Pascal Vincent, Alexandre de Br\u00e9bisson, and Xavier Bouthillier. Efficient exact gradient update for training deep networks with very large sparse targets. In Advances in Neural Information Processing Systems, pages 1108--1116, 2015."},{"key":"e_1_3_2_2_43_1","doi-asserted-by":"publisher","DOI":"10.5555\/3016100.3016298"},{"key":"e_1_3_2_2_44_1","unstructured":"Jason Weston Samy Bengio and Nicolas Usunier. Wsabie: Scaling up to large vocabulary image annotation. Jason Weston Samy Bengio and Nicolas Usunier. Wsabie: Scaling up to large vocabulary image annotation."},{"key":"e_1_3_2_2_45_1","unstructured":"Fajie Yuan Guibing Guo Xiangnan He Joemon M Jose Long Chen Ioannis Arapakis and Weinan Zhang. Fast batch gradient method for implicit recommenders. Fajie Yuan Guibing Guo Xiangnan He Joemon M Jose Long Chen Ioannis Arapakis and Weinan Zhang. Fast batch gradient method for implicit recommenders."},{"key":"e_1_3_2_2_46_1","doi-asserted-by":"publisher","DOI":"10.1145\/2983323.2983758"},{"key":"e_1_3_2_2_47_1","doi-asserted-by":"publisher","DOI":"10.1145\/3025171.3025211"},{"key":"e_1_3_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/P15-1025"}],"event":{"name":"WSDM 2018: The Eleventh ACM International Conference on Web Search and Data Mining","location":"Marina Del Rey CA USA","acronym":"WSDM 2018","sponsor":["SIGMOD ACM Special Interest Group on Management of Data","SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web","SIGKDD ACM Special Interest Group on Knowledge Discovery in Data","SIGIR ACM Special Interest Group on Information Retrieval"]},"container-title":["Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3159652.3159695","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3159652.3159695","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,6]],"date-time":"2023-01-06T08:01:06Z","timestamp":1672992066000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3159652.3159695"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,2,2]]},"references-count":48,"alternative-id":["10.1145\/3159652.3159695","10.1145\/3159652"],"URL":"http:\/\/dx.doi.org\/10.1145\/3159652.3159695","relation":{},"published":{"date-parts":[[2018,2,2]]},"assertion":[{"value":"2018-02-02","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}