{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,2,4]],"date-time":"2023-02-04T05:39:17Z","timestamp":1675489157027},"publisher-location":"New York, NY, USA","reference-count":44,"publisher":"ACM","license":[{"start":{"date-parts":[[2018,11,5]],"date-time":"2018-11-05T00:00:00Z","timestamp":1541376000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2018,11,5]]},"DOI":"10.1145\/3240765.3243494","type":"proceedings-article","created":{"date-parts":[[2018,11,6]],"date-time":"2018-11-06T13:36:57Z","timestamp":1541511417000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":14,"title":["Searching toward pareto-optimal device-aware neural architectures"],"prefix":"10.1145","author":[{"given":"An-Chieh","family":"Cheng","sequence":"first","affiliation":[{"name":"National Tsing-Hua University, Hsinchu, Taiwan"}]},{"given":"Jin-Dong","family":"Dong","sequence":"additional","affiliation":[{"name":"National Tsing-Hua University, Hsinchu, Taiwan"}]},{"given":"Chi-Hung","family":"Hsu","sequence":"additional","affiliation":[{"name":"National Tsing-Hua University, Hsinchu, Taiwan"}]},{"given":"Shu-Huan","family":"Chang","sequence":"additional","affiliation":[{"name":"National Tsing-Hua University, Hsinchu, Taiwan"}]},{"given":"Min","family":"Sun","sequence":"additional","affiliation":[{"name":"National Tsing-Hua University, Hsinchu, Taiwan"}]},{"given":"Shih-Chieh","family":"Chang","sequence":"additional","affiliation":[{"name":"National Tsing-Hua University, Hsinchu, Taiwan"}]},{"given":"Jia-Yu","family":"Pan","sequence":"additional","affiliation":[{"name":"Google Research"}]},{"given":"Yu-Ting","family":"Chen","sequence":"additional","affiliation":[{"name":"Google Research"}]},{"given":"Wei","family":"Wei","sequence":"additional","affiliation":[{"name":"Google Research"}]},{"given":"Da-Cheng","family":"Juan","sequence":"additional","affiliation":[{"name":"Google Research"}]}],"member":"320","published-online":{"date-parts":[[2018,11,5]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"ICLR'17","author":"Baker Bowen","year":"2016","unstructured":"Bowen Baker , Otkrist Gupta , Nikhil Naik , and Ramesh Raskar . 2016 . Designing neural network architectures using reinforcement learning . ICLR'17 (2016). Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. 2016. Designing neural network architectures using reinforcement learning. ICLR'17 (2016)."},{"key":"e_1_3_2_1_2_1","unstructured":"Bowen Baker Otkrist Gupta Ramesh Raskar and Nikhil Naik. 2018. Accelerating neural architecture search using performance prediction. (2018). Bowen Baker Otkrist Gupta Ramesh Raskar and Nikhil Naik. 2018. Accelerating neural architecture search using performance prediction. (2018)."},{"key":"e_1_3_2_1_3_1","volume-title":"Understanding and Simplifying One-Shot Architecture Search. In International Conference on Machine Learning. 549--558","author":"Bender Gabriel","year":"2018","unstructured":"Gabriel Bender , Pieter-Jan Kindermans , Barret Zoph , Vijay Vasudevan , and Quoc Le . 2018 . Understanding and Simplifying One-Shot Architecture Search. In International Conference on Machine Learning. 549--558 . Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le. 2018. Understanding and Simplifying One-Shot Architecture Search. In International Conference on Machine Learning. 549--558."},{"key":"e_1_3_2_1_4_1","volume-title":"ICLR'18","author":"Brock Andrew","year":"2017","unstructured":"Andrew Brock , Theodore Lim , James M Ritchie , and Nick Weston . 2017 . SMASH: one-shot model architecture search through hypernetworks . ICLR'18 (2017). Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2017. SMASH: one-shot model architecture search through hypernetworks. ICLR'18 (2017)."},{"key":"e_1_3_2_1_5_1","volume-title":"AAAI'18","author":"Cai Han","year":"2017","unstructured":"Han Cai , Tianyao Chen , Weinan Zhang , Yong Yu , and Jun Wang . 2017 . Efficient Architecture Search by Network Transformation . AAAI'18 (2017). Han Cai, Tianyao Chen, Weinan Zhang, Yong Yu, and Jun Wang. 2017. Efficient Architecture Search by Network Transformation. AAAI'18 (2017)."},{"key":"e_1_3_2_1_6_1","volume-title":"Path-Level Network Transformation for Efficient Architecture Search. arXiv preprint arXiv:1806.02639","author":"Cai Han","year":"2018","unstructured":"Han Cai , Jiacheng Yang , Weinan Zhang , Song Han , and Yong Yu. 2018. Path-Level Network Transformation for Efficient Architecture Search. arXiv preprint arXiv:1806.02639 ( 2018 ). Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. 2018. Path-Level Network Transformation for Efficient Architecture Search. arXiv preprint arXiv:1806.02639 (2018)."},{"key":"e_1_3_2_1_7_1","volume-title":"Reinforced Evolutionary Neural Architecture Search. arXiv preprint arXiv:1808.00193","author":"Chen Yukang","year":"2018","unstructured":"Yukang Chen , Qian Zhang , Chang Huang , Lisen Mu , Gaofeng Meng , and Xinggang Wang . 2018. Reinforced Evolutionary Neural Architecture Search. arXiv preprint arXiv:1808.00193 ( 2018 ). Yukang Chen, Qian Zhang, Chang Huang, Lisen Mu, Gaofeng Meng, and Xinggang Wang. 2018. Reinforced Evolutionary Neural Architecture Search. arXiv preprint arXiv:1808.00193 (2018)."},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"e_1_3_2_1_9_1","first-page":"3460","article-title":"Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves","volume":"15","author":"Domhan Tobias","year":"2015","unstructured":"Tobias Domhan , Jost Tobias Springenberg , and Frank Hutter . 2015 . Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves .. In IJCAI , Vol. 15. 3460 -- 3468 . Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves.. In IJCAI, Vol. 15. 3460--8.","journal-title":"IJCAI"},{"key":"e_1_3_2_1_10_1","volume-title":"DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures. arXiv preprint arXiv:1806.08198","author":"Dong Jin-Dong","year":"2018","unstructured":"Jin-Dong Dong , An-Chieh Cheng , Da-Cheng Juan , Wei Wei , and Min Sun . 2018. DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures. arXiv preprint arXiv:1806.08198 ( 2018 ). Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei, and Min Sun. 2018. DPP-Net: Device-aware Progressive Search for Pareto-optimal Neural Architectures. arXiv preprint arXiv:1806.08198 (2018)."},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"crossref","unstructured":"Jin-Dong Dong An-Chieh Cheng Da-Cheng Juan Wei Wei and Min Sun. 2018. PPP-Net: Platform-aware Progressive Search for Pareto-optimal Neural Architectures. (2018). Jin-Dong Dong An-Chieh Cheng Da-Cheng Juan Wei Wei and Min Sun. 2018. PPP-Net: Platform-aware Progressive Search for Pareto-optimal Neural Architectures. (2018).","DOI":"10.1007\/978-3-030-01252-6_32"},{"key":"e_1_3_2_1_12_1","volume-title":"Simple and efficient architecture search for convolutional neural networks. arXiv preprint arXiv:1711.04528","author":"Elsken Thomas","year":"2017","unstructured":"Thomas Elsken , Jan-Hendrik Metzen , and Frank Hutter . 2017. Simple and efficient architecture search for convolutional neural networks. arXiv preprint arXiv:1711.04528 ( 2017 ). Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. 2017. Simple and efficient architecture search for convolutional neural networks. arXiv preprint arXiv:1711.04528 (2017)."},{"key":"e_1_3_2_1_13_1","volume-title":"Jan Hendrik Metzen, and Frank Hutter","author":"Elsken Thomas","year":"2018","unstructured":"Thomas Elsken , Jan Hendrik Metzen, and Frank Hutter . 2018 . Multi-objective architecture search for cnns. arXiv preprint arXiv:1804.09081 (2018). Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Multi-objective architecture search for cnns. arXiv preprint arXiv:1804.09081 (2018)."},{"key":"e_1_3_2_1_14_1","volume-title":"Jan Hendrik Metzen, and Frank Hutter","author":"Elsken Thomas","year":"2018","unstructured":"Thomas Elsken , Jan Hendrik Metzen, and Frank Hutter . 2018 . Neural Architecture Search: A Survey . arXiv preprint arXiv:1808.05377 (2018). Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2018. Neural Architecture Search: A Survey. arXiv preprint arXiv:1808.05377 (2018)."},{"key":"e_1_3_2_1_15_1","volume-title":"Foundations of genetic algorithms.","author":"Goldberg David E","unstructured":"David E Goldberg and Kalyanmoy Deb . 1991. A comparative analysis of selection schemes used in genetic algorithms . In Foundations of genetic algorithms. Vol. 1 . Elsevier , 69--93. David E Goldberg and Kalyanmoy Deb. 1991. A comparative analysis of selection schemes used in genetic algorithms. In Foundations of genetic algorithms. Vol. 1. Elsevier, 69--93."},{"key":"e_1_3_2_1_16_1","unstructured":"Awni Hannun Carl Case Jared Casper Bryan Catanzaro Greg Diamos Erich Elsen Ryan Prenger Sanjeev Satheesh Shubho Sengupta Adam Coates etal 2014. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567 (2014). Awni Hannun Carl Case Jared Casper Bryan Catanzaro Greg Diamos Erich Elsen Ryan Prenger Sanjeev Satheesh Shubho Sengupta Adam Coates et al. 2014. Deep speech: Scaling up end-to-end speech recognition. arXiv preprint arXiv:1412.5567 (2014)."},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"e_1_3_2_1_18_1","volume-title":"Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861","author":"Howard Andrew G","year":"2017","unstructured":"Andrew G Howard , Menglong Zhu , Bo Chen , Dmitry Kalenichenko , Weijun Wang , Tobias Weyand , Marco Andreetto , and Hartwig Adam . 2017 . Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017). Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)."},{"key":"e_1_3_2_1_19_1","volume-title":"MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning. arXiv preprint arXiv:1806.10332","author":"Hsu Chi-Hung","year":"2018","unstructured":"Chi-Hung Hsu , Shu-Huan Chang , Da-Cheng Juan , Jia-Yu Pan , Yu-Ting Chen , Wei Wei , and Shih-Chieh Chang . 2018 . MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning. arXiv preprint arXiv:1806.10332 (2018). Chi-Hung Hsu, Shu-Huan Chang, Da-Cheng Juan, Jia-Yu Pan, Yu-Ting Chen, Wei Wei, and Shih-Chieh Chang. 2018. MONAS: Multi-Objective Neural Architecture Search using Reinforcement Learning. arXiv preprint arXiv:1806.10332 (2018)."},{"key":"e_1_3_2_1_20_1","volume-title":"CondenseNet: An Efficient DenseNet using Learned Group Convolutions. arXiv preprint arXiv:1711.09224","author":"Huang Gao","year":"2017","unstructured":"Gao Huang , Shichen Liu , Laurens van der Maaten , and Kilian Q Weinberger . 2017. CondenseNet: An Efficient DenseNet using Learned Group Convolutions. arXiv preprint arXiv:1711.09224 ( 2017 ). Gao Huang, Shichen Liu, Laurens van der Maaten, and Kilian Q Weinberger. 2017. CondenseNet: An Efficient DenseNet using Learned Group Convolutions. arXiv preprint arXiv:1711.09224 (2017)."},{"key":"e_1_3_2_1_21_1","volume-title":"CVPR'17","author":"Huang Gao","year":"2017","unstructured":"Gao Huang , Zhuang Liu , Kilian Q Weinberger , and Laurens van der Maaten. 2017. Densely connected convolutional networks . CVPR'17 ( 2017 ). Gao Huang, Zhuang Liu, Kilian Q Weinberger, and Laurens van der Maaten. 2017. Densely connected convolutional networks. CVPR'17 (2017)."},{"key":"e_1_3_2_1_22_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-25566-3_40"},{"key":"e_1_3_2_1_23_1","volume-title":"Efficient Neural Architecture Search with Network Morphism. arXiv preprint arXiv:1806.10282","author":"Jin Haifeng","year":"2018","unstructured":"Haifeng Jin , Qingquan Song , and Xia Hu. 2018. Efficient Neural Architecture Search with Network Morphism. arXiv preprint arXiv:1806.10282 ( 2018 ). Haifeng Jin, Qingquan Song, and Xia Hu. 2018. Efficient Neural Architecture Search with Network Morphism. arXiv preprint arXiv:1806.10282 (2018)."},{"key":"e_1_3_2_1_24_1","volume-title":"NEMO: Neuro-Evolution with Multiobjective Optimization of Deep Neural Network for Speed and Accuracy. ICML'17 AutoML Workshop","author":"Kim Ye-Hoon","year":"2017","unstructured":"Ye-Hoon Kim , Bhargava Reddy , Sojung Yun , and Chanwon Seo . 2017 . NEMO: Neuro-Evolution with Multiobjective Optimization of Deep Neural Network for Speed and Accuracy. ICML'17 AutoML Workshop (2017). Ye-Hoon Kim, Bhargava Reddy, Sojung Yun, and Chanwon Seo. 2017. NEMO: Neuro-Evolution with Multiobjective Optimization of Deep Neural Network for Speed and Accuracy. ICML'17 AutoML Workshop (2017)."},{"key":"e_1_3_2_1_25_1","unstructured":"Alex Krizhevsky Ilya Sutskever and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. 1097--1105. Alex Krizhevsky Ilya Sutskever and Geoffrey E Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems. 1097--1105."},{"key":"e_1_3_2_1_26_1","volume-title":"Progressive neural architecture search. arXiv preprint arXiv:1712.00559","author":"Liu Chenxi","year":"2017","unstructured":"Chenxi Liu , Barret Zoph , Jonathon Shlens , Wei Hua , Li-Jia Li , Li Fei-Fei , Alan Yuille , Jonathan Huang , and Kevin Murphy . 2017. Progressive neural architecture search. arXiv preprint arXiv:1712.00559 ( 2017 ). Chenxi Liu, Barret Zoph, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. 2017. Progressive neural architecture search. arXiv preprint arXiv:1712.00559 (2017)."},{"key":"e_1_3_2_1_27_1","volume-title":"ICLR'18","author":"Liu Hanxiao","year":"2017","unstructured":"Hanxiao Liu , Karen Simonyan , Oriol Vinyals , Chrisantha Fernando , and Koray Kavukcuoglu . 2017 . Hierarchical representations for efficient architecture search . ICLR'18 (2017). Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. 2017. Hierarchical representations for efficient architecture search. ICLR'18 (2017)."},{"key":"e_1_3_2_1_28_1","volume-title":"DARTS: Differentiable Architecture Search. arXiv preprint arXiv:1806.09055","author":"Liu Hanxiao","year":"2018","unstructured":"Hanxiao Liu , Karen Simonyan , and Yiming Yang . 2018 . DARTS: Differentiable Architecture Search. arXiv preprint arXiv:1806.09055 (2018). Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. DARTS: Differentiable Architecture Search. arXiv preprint arXiv:1806.09055 (2018)."},{"key":"e_1_3_2_1_29_1","volume-title":"Workshop on Automatic Machine Learning. 58--65","author":"Mendoza Hector","year":"2016","unstructured":"Hector Mendoza , Aaron Klein , Matthias Feurer , Jost Tobias Springenberg , and Frank Hutter . 2016 . Towards automatically-tuned neural networks . In Workshop on Automatic Machine Learning. 58--65 . Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. 2016. Towards automatically-tuned neural networks. In Workshop on Automatic Machine Learning. 58--65."},{"key":"e_1_3_2_1_30_1","volume-title":"Deeparchitect: Automatically designing and training deep architectures. arXiv preprint arXiv:1704.08792","author":"Negrinho Renato","year":"2017","unstructured":"Renato Negrinho and Geoff Gordon . 2017 . Deeparchitect: Automatically designing and training deep architectures. arXiv preprint arXiv:1704.08792 (2017). Renato Negrinho and Geoff Gordon. 2017. Deeparchitect: Automatically designing and training deep architectures. arXiv preprint arXiv:1704.08792 (2017)."},{"key":"e_1_3_2_1_31_1","volume-title":"Efficient Neural Architecture Search via Parameter Sharing. arXiv preprint arXiv:1802.03268","author":"Pham Hieu","year":"2018","unstructured":"Hieu Pham , Melody Y Guan , Barret Zoph , Quoc V Le , and Jeff Dean . 2018. Efficient Neural Architecture Search via Parameter Sharing. arXiv preprint arXiv:1802.03268 ( 2018 ). Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Jeff Dean. 2018. Efficient Neural Architecture Search via Parameter Sharing. arXiv preprint arXiv:1802.03268 (2018)."},{"key":"e_1_3_2_1_32_1","volume-title":"Regularized Evolution for Image Classifier Architecture Search. arXiv preprint arXiv:1802.01548","author":"Real Esteban","year":"2018","unstructured":"Esteban Real , Alok Aggarwal , Yanping Huang , and Quoc V Le. 2018. Regularized Evolution for Image Classifier Architecture Search. arXiv preprint arXiv:1802.01548 ( 2018 ). Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. 2018. Regularized Evolution for Image Classifier Architecture Search. arXiv preprint arXiv:1802.01548 (2018)."},{"key":"e_1_3_2_1_33_1","volume-title":"ICML'17","author":"Real Esteban","year":"2017","unstructured":"Esteban Real , Sherry Moore , Andrew Selle , Saurabh Saxena , Yutaka Leon Suematsu , Quoc Le , and Alex Kurakin . 2017 . Large-scale evolution of image classifiers . ICML'17 (2017). Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Quoc Le, and Alex Kurakin. 2017. Large-scale evolution of image classifiers. ICML'17 (2017)."},{"key":"e_1_3_2_1_34_1","volume-title":"Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation. arXiv preprint arXiv:1801.04381","author":"Sandler Mark","year":"2018","unstructured":"Mark Sandler , Andrew Howard , Menglong Zhu , Andrey Zhmoginov , and Liang-Chieh Chen . 2018. Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation. arXiv preprint arXiv:1801.04381 ( 2018 ). Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. 2018. Inverted Residuals and Linear Bottlenecks: Mobile Networks for Classification, Detection and Segmentation. arXiv preprint arXiv:1801.04381 (2018)."},{"key":"e_1_3_2_1_35_1","unstructured":"Shreyas Saxena and Jakob Verbeek. 2016. Convolutional neural fabrics. In Advances in Neural Information Processing Systems. 4053--4061. Shreyas Saxena and Jakob Verbeek. 2016. Convolutional neural fabrics. In Advances in Neural Information Processing Systems. 4053--4061."},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1145\/2966986.2967058"},{"key":"e_1_3_2_1_37_1","unstructured":"Ilya Sutskever Oriol Vinyals and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Advances in neural information processing systems. 3104--3112. Ilya Sutskever Oriol Vinyals and Quoc V Le. 2014. Sequence to sequence learning with neural networks. In Advances in neural information processing systems. 3104--3112."},{"key":"e_1_3_2_1_38_1","volume-title":"MnasNet: Platform-Aware Neural Architecture Search for Mobile. arXiv preprint arXiv:1807.11626","author":"Tan Mingxing","year":"2018","unstructured":"Mingxing Tan , Bo Chen , Ruoming Pang , Vijay Vasudevan , and Quoc V Le. 2018. MnasNet: Platform-Aware Neural Architecture Search for Mobile. arXiv preprint arXiv:1807.11626 ( 2018 ). Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, and Quoc V Le. 2018. MnasNet: Platform-Aware Neural Architecture Search for Mobile. arXiv preprint arXiv:1807.11626 (2018)."},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.154"},{"key":"e_1_3_2_1_40_1","volume-title":"Shufflenet: An extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083","author":"Zhang Xiangyu","year":"2017","unstructured":"Xiangyu Zhang , Xinyu Zhou , Mengxiao Lin , and Jian Sun . 2017 . Shufflenet: An extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083 (2017). Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2017. Shufflenet: An extremely efficient convolutional neural network for mobile devices. arXiv preprint arXiv:1707.01083 (2017)."},{"key":"e_1_3_2_1_41_1","volume-title":"Practical Network Blocks Design with Q-Learning. AAAI'18","author":"Zhong Zhao","year":"2017","unstructured":"Zhao Zhong , Junjie Yan , and Cheng-Lin Liu . 2017 . Practical Network Blocks Design with Q-Learning. AAAI'18 (2017). Zhao Zhong, Junjie Yan, and Cheng-Lin Liu. 2017. Practical Network Blocks Design with Q-Learning. AAAI'18 (2017)."},{"key":"e_1_3_2_1_42_1","volume-title":"Resource-Efficient Neural Architect. arXiv preprint arXiv:1806.07912","author":"Zhou Yanqi","year":"2018","unstructured":"Yanqi Zhou , Siavash Ebrahimi , Sercan \u00d6 Ar\u0131k , Haonan Yu , Hairong Liu , and Greg Diamos . 2018. Resource-Efficient Neural Architect. arXiv preprint arXiv:1806.07912 ( 2018 ). Yanqi Zhou, Siavash Ebrahimi, Sercan \u00d6 Ar\u0131k, Haonan Yu, Hairong Liu, and Greg Diamos. 2018. Resource-Efficient Neural Architect. arXiv preprint arXiv:1806.07912 (2018)."},{"key":"e_1_3_2_1_43_1","volume-title":"ICLR'17","author":"Zoph Barret","year":"2016","unstructured":"Barret Zoph and Quoc V Le . 2016 . Neural architecture search with reinforcement learning . ICLR'17 (2016). Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement learning. ICLR'17 (2016)."},{"key":"e_1_3_2_1_44_1","volume-title":"Learning transferable architectures for scalable image recognition. arXiv preprint arXiv:1707.07012","author":"Zoph Barret","year":"2017","unstructured":"Barret Zoph , Vijay Vasudevan , Jonathon Shlens , and Quoc V Le. 2017. Learning transferable architectures for scalable image recognition. arXiv preprint arXiv:1707.07012 ( 2017 ). Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2017. Learning transferable architectures for scalable image recognition. arXiv preprint arXiv:1707.07012 (2017)."}],"event":{"name":"ICCAD '18: IEEE\/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN","location":"San Diego California","acronym":"ICCAD '18","sponsor":["IEEE-EDS Electronic Devices Society","IEEE CAS","IEEE CEDA"]},"container-title":["Proceedings of the International Conference on Computer-Aided Design"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3240765.3243494","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,13]],"date-time":"2023-01-13T22:06:20Z","timestamp":1673647580000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3240765.3243494"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11,5]]},"references-count":44,"alternative-id":["10.1145\/3240765.3243494","10.1145\/3240765"],"URL":"http:\/\/dx.doi.org\/10.1145\/3240765.3243494","relation":{},"published":{"date-parts":[[2018,11,5]]},"assertion":[{"value":"2018-11-05","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}