{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,9,4]],"date-time":"2023-09-04T15:07:12Z","timestamp":1693840032824},"publisher-location":"New York, NY, USA","reference-count":39,"publisher":"ACM","license":[{"start":{"date-parts":[[2019,5,13]],"date-time":"2019-05-13T00:00:00Z","timestamp":1557705600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/www.acm.org\/publications\/policies\/copyright_policy#Background"}],"content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2019,5,13]]},"DOI":"10.1145\/3308558.3313561","type":"proceedings-article","created":{"date-parts":[[2019,5,13]],"date-time":"2019-05-13T12:17:59Z","timestamp":1557749879000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":18,"title":["Neural Variational Correlated Topic Modeling"],"prefix":"10.1145","author":[{"given":"Luyang","family":"Liu","sequence":"first","affiliation":[{"name":"Beijing Institute of Technology, China"}]},{"given":"Heyan","family":"Huang","sequence":"additional","affiliation":[{"name":"Beijing Institute of Technology, China"}]},{"given":"Yang","family":"Gao","sequence":"additional","affiliation":[{"name":"Beijing Insititute of Technology, China"}]},{"given":"Yongfeng","family":"Zhang","sequence":"additional","affiliation":[{"name":"Rutgers University, USA"}]},{"given":"Xiaochi","family":"Wei","sequence":"additional","affiliation":[{"name":"Baidu Inc, China"}]}],"member":"320","published-online":{"date-parts":[[2019,5,13]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"Amrudin Agovic and Arindam Banerjee. 2012. Gaussian Process Topic Models. CoRRabs\/1203.3462(2012). http:\/\/arxiv.org\/abs\/1203.3462 Amrudin Agovic and Arindam Banerjee. 2012. Gaussian Process Topic Models. CoRRabs\/1203.3462(2012). http:\/\/arxiv.org\/abs\/1203.3462"},{"key":"e_1_3_2_1_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2008.140"},{"key":"e_1_3_2_1_3_1","volume-title":"Arnaud Doucet, and Michael I Jordan.","author":"Andrieu Christophe","year":"2003","unstructured":"Christophe Andrieu , Nando De Freitas , Arnaud Doucet, and Michael I Jordan. 2003 . An introduction to MCMC for machine learning. Machine learning50, 1-2 (2003), 5-43. Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. 2003. An introduction to MCMC for machine learning. Machine learning50, 1-2 (2003), 5-43."},{"key":"e_1_3_2_1_4_1","first-page":"281","article-title":"Random search for hyper-parameter optimization","author":"Bergstra James","year":"2012","unstructured":"James Bergstra and Yoshua Bengio . 2012 . Random search for hyper-parameter optimization . Journal of Machine Learning Research13 , Feb (2012), 281 - 305 . James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. Journal of Machine Learning Research13, Feb (2012), 281-305.","journal-title":"Journal of Machine Learning Research13"},{"key":"e_1_3_2_1_5_1","unstructured":"Christian H Bischof and Xiaobai Sun. 1994. On orthogonal block elimination. Preprint MCS-P450-0794 Mathematics and Computer Science Division Argonne National Laboratory(1994). Christian H Bischof and Xiaobai Sun. 1994. On orthogonal block elimination. Preprint MCS-P450-0794 Mathematics and Computer Science Division Argonne National Laboratory(1994)."},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.2017.1285773"},{"key":"e_1_3_2_1_7_1","volume-title":"NIPS 2005","author":"David","year":"2005","unstructured":"David M. Blei and John D. Lafferty. 2005. Correlated Topic Models. In Advances in Neural Information Processing Systems 18 {Neural Information Processing Systems , NIPS 2005 , December 5-8, 2005 , Vancouver, British Columbia, Canada}. 147-154. http:\/\/papers.nips.cc\/paper\/2906-correlated-topic-models David M. Blei and John D. Lafferty. 2005. Correlated Topic Models. In Advances in Neural Information Processing Systems 18 {Neural Information Processing Systems, NIPS 2005, December 5-8, 2005, Vancouver, British Columbia, Canada}. 147-154. http:\/\/papers.nips.cc\/paper\/2906-correlated-topic-models"},{"key":"e_1_3_2_1_8_1","volume-title":"Lafferty","author":"Blei David M.","year":"2005","unstructured":"David M. Blei and John D . Lafferty . 2005 . Correlated Topic Models . (2005), 147-154. http:\/\/papers.nips.cc\/paper\/2906-correlated-topic-models David M. Blei and John D. Lafferty. 2005. Correlated Topic Models. (2005), 147-154. http:\/\/papers.nips.cc\/paper\/2906-correlated-topic-models"},{"key":"e_1_3_2_1_9_1","first-page":"601","volume-title":"NIPS 2001","author":"Blei David M.","year":"2001","unstructured":"David M. Blei , Andrew Y. Ng , and Michael I. Jordan . 2001. Latent Dirichlet Allocation. In Advances in Neural Information Processing Systems 14 {Neural Information Processing Systems: Natural and Synthetic , NIPS 2001 , December 3-8, 2001 , Vancouver, British Columbia, Canada}, Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani (Eds.). MIT Press , 601 - 608 . http:\/\/papers.nips.cc\/paper\/2070-latent-dirichlet-allocation David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2001. Latent Dirichlet Allocation. In Advances in Neural Information Processing Systems 14 {Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada}, Thomas G. Dietterich, Suzanna Becker, and Zoubin Ghahramani (Eds.). MIT Press, 601-608. http:\/\/papers.nips.cc\/paper\/2070-latent-dirichlet-allocation"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/1961189.1961199"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/P15-1077"},{"key":"e_1_3_2_1_12_1","first-page":"511","article-title":"Kernel topic models","author":"Hennig Philipp","year":"2012","unstructured":"Philipp Hennig , David Stern , Ralf Herbrich , and Thore Graepel . 2012 . Kernel topic models . In Artificial Intelligence and Statistics. 511 - 519 . Philipp Hennig, David Stern, Ralf Herbrich, and Thore Graepel. 2012. Kernel topic models. In Artificial Intelligence and Statistics. 511-519.","journal-title":"Artificial Intelligence and Statistics."},{"key":"e_1_3_2_1_13_1","volume-title":"The","author":"Hinton Geoffrey E","year":"1995","unstructured":"Geoffrey E Hinton , Peter Dayan , Brendan J Frey , and Radford M Neal . 1995. The \u201d wake-sleep\u201d algorithm for unsupervised neural networks. Science 268, 5214 ( 1995 ), 1158-1161. Geoffrey E Hinton, Peter Dayan, Brendan J Frey, and Radford M Neal. 1995. The\u201d wake-sleep\u201d algorithm for unsupervised neural networks. Science268, 5214 (1995), 1158-1161."},{"key":"e_1_3_2_1_14_1","unstructured":"Matthew Hoffman Francis R Bach and David M Blei. 2010. Online learning for latent dirichlet allocation. In advances in neural information processing systems. 856-864. Matthew Hoffman Francis R Bach and David M Blei. 2010. Online learning for latent dirichlet allocation. In advances in neural information processing systems. 856-864."},{"key":"e_1_3_2_1_15_1","first-page":"1303","article-title":"Stochastic variational inference","volume":"1","author":"Hoffman Matthew D","year":"2013","unstructured":"Matthew D Hoffman , David M Blei , Chong Wang , and John Paisley . 2013 . Stochastic variational inference . The Journal of Machine Learning Research14 , 1 (2013), 1303 - 1347 . Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. 2013. Stochastic variational inference. The Journal of Machine Learning Research14, 1 (2013), 1303-1347.","journal-title":"The Journal of Machine Learning Research14"},{"key":"e_1_3_2_1_16_1","doi-asserted-by":"publisher","DOI":"10.1145\/1964858.1964870"},{"key":"e_1_3_2_1_17_1","volume-title":"Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980(2014).","author":"Kingma Diederik P","year":"2014","unstructured":"Diederik P Kingma and Jimmy Ba . 2014 . Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980(2014). Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980(2014)."},{"key":"e_1_3_2_1_18_1","unstructured":"Diederik P. Kingma Tim Salimans and Max Welling. 2016. Improving Variational Inference with Inverse Autoregressive Flow. CoRRabs\/1606.04934(2016). Diederik P. Kingma Tim Salimans and Max Welling. 2016. Improving Variational Inference with Inverse Autoregressive Flow. CoRRabs\/1606.04934(2016)."},{"key":"e_1_3_2_1_19_1","volume-title":"Kingma and Max Welling","author":"Diederik","year":"2013","unstructured":"Diederik P. Kingma and Max Welling . 2013 . Auto-Encoding Variational Bayes. CoRRabs\/ 1312.6114(2013). http:\/\/arxiv.org\/abs\/1312.6114 Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. CoRRabs\/1312.6114(2013). http:\/\/arxiv.org\/abs\/1312.6114"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/E14-1056"},{"key":"e_1_3_2_1_21_1","first-page":"2579","article-title":"Visualizing data using t-SNE","author":"van der Maaten Laurens","year":"2008","unstructured":"Laurens van der Maaten and Geoffrey Hinton . 2008 . Visualizing data using t-SNE . Journal of machine learning research9 , Nov (2008), 2579 - 2605 . Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. Journal of machine learning research9, Nov (2008), 2579-2605.","journal-title":"Journal of machine learning research9"},{"key":"e_1_3_2_1_22_1","first-page":"2410","volume-title":"Proceedings of the 34th International Conference on Machine Learning, ICML 2017","volume":"70","author":"Miao Yishu","year":"2017","unstructured":"Yishu Miao , Edward Grefenstette , and Phil Blunsom . 2017 . Discovering Discrete Latent Topics with Neural Variational Inference . In Proceedings of the 34th International Conference on Machine Learning, ICML 2017 , Sydney, NSW, Australia , 6-11 August 2017(Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.). Vol. 70 . PMLR, 2410 - 2419 . http:\/\/proceedings.mlr.press\/v70\/miao17a.html Yishu Miao, Edward Grefenstette, and Phil Blunsom. 2017. Discovering Discrete Latent Topics with Neural Variational Inference. In Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017(Proceedings of Machine Learning Research), Doina Precup and Yee Whye Teh (Eds.). Vol. 70. PMLR, 2410-2419. http:\/\/proceedings.mlr.press\/v70\/miao17a.html"},{"key":"e_1_3_2_1_23_1","volume-title":"Proceedings of the 33nd International Conference on Machine Learning, ICML","author":"Miao Yishu","year":"2016","unstructured":"Yishu Miao , Lei Yu , and Phil Blunsom . 2016. Neural Variational Inference for Text Processing . In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016 , New York City, NY , USA, June 19-24, 2016(JMLR Workshop and Conference Proceedings), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). Vol. 48 . JMLR. org, 1727-1736. http:\/\/jmlr.org\/proceedings\/papers\/v48\/miao16.html Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural Variational Inference for Text Processing. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016(JMLR Workshop and Conference Proceedings), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). Vol. 48. JMLR.org, 1727-1736. http:\/\/jmlr.org\/proceedings\/papers\/v48\/miao16.html"},{"key":"e_1_3_2_1_24_1","unstructured":"Tomas Mikolov Ilya Sutskever Kai Chen Greg S Corrado and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems. 3111-3119. Tomas Mikolov Ilya Sutskever Kai Chen Greg S Corrado and Jeff Dean. 2013. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems. 3111-3119."},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/D14-1162"},{"key":"e_1_3_2_1_26_1","volume-title":"Michael Syskind Pedersen","author":"Petersen Kaare Brandt","year":"2008","unstructured":"Kaare Brandt Petersen , Michael Syskind Pedersen , 2008 . The matrix cookbook. Technical University of Denmark 7, 15 (2008), 510. Kaare Brandt Petersen, Michael Syskind Pedersen, 2008. The matrix cookbook. Technical University of Denmark7, 15 (2008), 510."},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/1401890.1401960"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.5555\/1699510.1699543"},{"key":"e_1_3_2_1_29_1","volume-title":"Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. ELRA, Valletta, Malta, 45-50","author":"Rehurek Radim","year":"2010","unstructured":"Radim Rehurek and Petr Sojka . 2010 . Software Framework for Topic Modelling with Large Corpora . In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. ELRA, Valletta, Malta, 45-50 . http:\/\/is.muni.cz\/publication\/884893\/en. Radim Rehurek and Petr Sojka. 2010. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks. ELRA, Valletta, Malta, 45-50. http:\/\/is.muni.cz\/publication\/884893\/en."},{"key":"e_1_3_2_1_30_1","first-page":"1530","volume-title":"Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015(JMLR Workshop and Conference Proceedings), Francis R. Bach and David M. Blei (Eds.).","volume":"37","author":"Rezende Danilo Jimenez","year":"2015","unstructured":"Danilo Jimenez Rezende and Shakir Mohamed . 2015 . Variational Inference with Normalizing Flows . In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015(JMLR Workshop and Conference Proceedings), Francis R. Bach and David M. Blei (Eds.). Vol. 37 . JMLR.org, 1530 - 1538 . http:\/\/jmlr.org\/proceedings\/papers\/v37\/rezende15.html Danilo Jimenez Rezende and Shakir Mohamed. 2015. Variational Inference with Normalizing Flows. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015(JMLR Workshop and Conference Proceedings), Francis R. Bach and David M. Blei (Eds.). Vol. 37. JMLR.org, 1530-1538. http:\/\/jmlr.org\/proceedings\/papers\/v37\/rezende15.html"},{"key":"e_1_3_2_1_31_1","first-page":"1278","volume-title":"Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014(JMLR Workshop and Conference Proceedings)","volume":"32","author":"Rezende Danilo Jimenez","year":"2014","unstructured":"Danilo Jimenez Rezende , Shakir Mohamed , and Daan Wierstra . 2014 . Stochastic Backpropagation and Approximate Inference in Deep Generative Models . In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014(JMLR Workshop and Conference Proceedings) , Vol. 32 . JMLR.org, 1278 - 1286 . http:\/\/jmlr.org\/proceedings\/papers\/v32\/rezende14.html Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. 2014. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014(JMLR Workshop and Conference Proceedings), Vol. 32. JMLR.org, 1278-1286. http:\/\/jmlr.org\/proceedings\/papers\/v32\/rezende14.html"},{"key":"e_1_3_2_1_32_1","volume-title":"International Conference on Machine Learning. 1218-1226","author":"Salimans Tim","year":"2015","unstructured":"Tim Salimans , Diederik Kingma , and Max Welling . 2015 . Markov chain monte carlo and variational inference: Bridging the gap . In International Conference on Machine Learning. 1218-1226 . Tim Salimans, Diederik Kingma, and Max Welling. 2015. Markov chain monte carlo and variational inference: Bridging the gap. In International Conference on Machine Learning. 1218-1226."},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1145\/3178876.3186009"},{"key":"e_1_3_2_1_34_1","unstructured":"Akash Srivastava and Charles Sutton. 2017. Autoencoding Variational Inference For Topic Models. arXiv preprint arXiv:1703.01488(2017). Akash Srivastava and Charles Sutton. 2017. Autoencoding Variational Inference For Topic Models. arXiv preprint arXiv:1703.01488(2017)."},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/1014052.1014087"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1137\/S0895479894276369"},{"key":"e_1_3_2_1_37_1","volume-title":"Tomczak and Max Welling","author":"Jakub","year":"2016","unstructured":"Jakub M. Tomczak and Max Welling . 2016 . Improving Variational Auto-Encoders using Householder Flow . CoRRabs\/1611.09630(2016). http:\/\/arxiv.org\/abs\/1611.09630 Jakub M. Tomczak and Max Welling. 2016. Improving Variational Auto-Encoders using Householder Flow. CoRRabs\/1611.09630(2016). http:\/\/arxiv.org\/abs\/1611.09630"},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.5555\/3171837.3171874"},{"key":"e_1_3_2_1_39_1","volume-title":"On early stopping in gradient descent learning. Constructive Approximation26, 2","author":"Yao Yuan","year":"2007","unstructured":"Yuan Yao , Lorenzo Rosasco , and Andrea Caponnetto . 2007. On early stopping in gradient descent learning. Constructive Approximation26, 2 ( 2007 ), 289-315. Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. 2007. On early stopping in gradient descent learning. Constructive Approximation26, 2 (2007), 289-315."}],"event":{"name":"WWW '19: The Web Conference","location":"San Francisco CA USA","acronym":"WWW '19","sponsor":["IW3C2 International World Wide Web Conference Committee"]},"container-title":["The World Wide Web Conference"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3308558.3313561","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,18]],"date-time":"2023-04-18T06:12:38Z","timestamp":1681798358000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3308558.3313561"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,5,13]]},"references-count":39,"alternative-id":["10.1145\/3308558.3313561","10.1145\/3308558"],"URL":"http:\/\/dx.doi.org\/10.1145\/3308558.3313561","relation":{},"published":{"date-parts":[[2019,5,13]]},"assertion":[{"value":"2019-05-13","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}