{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,10,25]],"date-time":"2022-10-25T09:26:08Z","timestamp":1666689968340},"publisher-location":"New York, NY, USA","reference-count":30,"publisher":"ACM","funder":[{"name":"Information & Communications Technology Planning & Evaluation (IITP)","award":["2020-0-00862"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2020,8,23]]},"DOI":"10.1145\/3394486.3412864","type":"proceedings-article","created":{"date-parts":[[2020,8,20]],"date-time":"2020-08-20T23:03:53Z","timestamp":1597964633000},"source":"Crossref","is-referenced-by-count":13,"title":["Hi-COVIDNet"],"prefix":"10.1145","author":[{"given":"Minseok","family":"Kim","sequence":"first","affiliation":[{"name":"KAIST, Daejeon, South Korea"}]},{"given":"Junhyeok","family":"Kang","sequence":"additional","affiliation":[{"name":"KAIST, Daejeon, South Korea"}]},{"given":"Doyoung","family":"Kim","sequence":"additional","affiliation":[{"name":"KAIST, Daejeon, South Korea"}]},{"given":"Hwanjun","family":"Song","sequence":"additional","affiliation":[{"name":"KAIST, Daejeon, South Korea"}]},{"given":"Hyangsuk","family":"Min","sequence":"additional","affiliation":[{"name":"KAIST, Daejeon, South Korea"}]},{"given":"Youngeun","family":"Nam","sequence":"additional","affiliation":[{"name":"KAIST, Daejeon, South Korea"}]},{"given":"Dongmin","family":"Park","sequence":"additional","affiliation":[{"name":"KAIST, Daejeon, South Korea"}]},{"given":"Jae-Gil","family":"Lee","sequence":"additional","affiliation":[{"name":"KAIST, Daejeon, South Korea"}]}],"member":"320","published-online":{"date-parts":[[2020,8,20]]},"reference":[{"key":"e_1_3_2_2_1_1","volume-title":"Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief","author":"Benvenuto D.","year":"2020","unstructured":"Benvenuto , D. , Giovanetti , M. , Vassallo , L. , Angeletti , S. , and Ciccozzi , M . Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief ( 2020 ), 105340. Benvenuto, D., Giovanetti, M., Vassallo, L., Angeletti, S., and Ciccozzi, M. Application of the ARIMA model on the COVID-2019 epidemic dataset. Data in Brief (2020), 105340."},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1023\/A:1010933404324"},{"key":"e_1_3_2_2_3_1","doi-asserted-by":"crossref","unstructured":"Chimmula V. K. R. and \n Zhang L\n . \n Time series forecasting of COVID-19 transmission in Canada using LS\u2122 networks\n . Chaos Solitons\n & Fractals (\n 2020\n ) 109864. Chimmula V. K. R. and Zhang L. Time series forecasting of COVID-19 transmission in Canada using LS\u2122 networks. Chaos Solitons & Fractals (2020) 109864.","DOI":"10.1016\/j.chaos.2020.109864"},{"key":"e_1_3_2_2_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2002.804943"},{"key":"e_1_3_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"e_1_3_2_2_6_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4612-0723-8"},{"key":"e_1_3_2_2_7_1","doi-asserted-by":"publisher","DOI":"10.3390\/ijgi9010044"},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"},{"key":"e_1_3_2_2_9_1","volume-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167","author":"Ioffe S.","year":"2015","unstructured":"Ioffe , S. , and Szegedy , C . Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 ( 2015 ). Ioffe, S., and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)."},{"key":"e_1_3_2_2_10_1","volume-title":"Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980","author":"Kingma D. P.","year":"2014","unstructured":"Kingma , D. P. , and Ba , J . Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 ( 2014 ). Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)."},{"key":"e_1_3_2_2_11_1","first-page":"950","volume-title":"Proceedings of Advances in Neural Information Processing Systems","author":"Krogh A.","year":"1992","unstructured":"Krogh , A. , and Hertz , J. A . A simple weight decay can improve generalization . In Proceedings of Advances in Neural Information Processing Systems ( 1992 ), pp. 950 -- 957 . Krogh, A., and Hertz, J. A. A simple weight decay can improve generalization. In Proceedings of Advances in Neural Information Processing Systems (1992), pp. 950--957."},{"key":"e_1_3_2_2_12_1","volume-title":"Early dynamics of transmission and control of COVID-19: A mathematical modelling study. The Lancet Infectious Diseases","author":"Kucharski A. J.","year":"2020","unstructured":"Kucharski , A. J. , Russell , T. W. , Diamond , C. , Liu , Y. , Edmunds , J. , Funk , S. , Eggo , R. M. , Sun , F. , Jit , M. , Munday , J. D. , Early dynamics of transmission and control of COVID-19: A mathematical modelling study. The Lancet Infectious Diseases ( 2020 ). Kucharski, A. J., Russell, T. W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R. M., Sun, F., Jit, M., Munday, J. D., et al. Early dynamics of transmission and control of COVID-19: A mathematical modelling study. The Lancet Infectious Diseases (2020)."},{"key":"e_1_3_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"e_1_3_2_2_14_1","volume-title":"COVID-19 epidemic outside China: 34 founders and exponential growth. medRxiv","author":"Li Y.","year":"2020","unstructured":"Li , Y. , Liang , M. , Yin , X. , Liu , X. , Hao , M. , Hu , Z. , Wang , Y. , and Jin , L . COVID-19 epidemic outside China: 34 founders and exponential growth. medRxiv ( 2020 ). Li, Y., Liang, M., Yin, X., Liu, X., Hao, M., Hu, Z., Wang, Y., and Jin, L. COVID-19 epidemic outside China: 34 founders and exponential growth. medRxiv (2020)."},{"key":"e_1_3_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2017.07.005"},{"key":"e_1_3_2_2_16_1","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-018-36934-8"},{"key":"e_1_3_2_2_17_1","volume-title":"The natural language decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730","author":"McCann B.","year":"2018","unstructured":"McCann , B. , Keskar , N. S. , Xiong , C. , and Socher , R . The natural language decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730 ( 2018 ). McCann, B., Keskar, N. S., Xiong, C., and Socher, R. The natural language decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730 (2018)."},{"key":"e_1_3_2_2_18_1","unstructured":"McNeil D. G. Coronavirus has become a pandemic W.H.O. says. https:\/\/www.nytimes.com\/2020\/03\/11\/health\/coronavirus-pandemic-who.html. McNeil D. G. Coronavirus has become a pandemic W.H.O. says. https:\/\/www.nytimes.com\/2020\/03\/11\/health\/coronavirus-pandemic-who.html."},{"key":"e_1_3_2_2_19_1","volume-title":"Machine-learning forecasting for Dengue epidemics - Comparing LS\u2122, random forest and lasso regression. medRxiv","author":"Mussumeci E.","year":"2020","unstructured":"Mussumeci , E. , and Coelho , F. C . Machine-learning forecasting for Dengue epidemics - Comparing LS\u2122, random forest and lasso regression. medRxiv ( 2020 ). Mussumeci, E., and Coelho, F. C. Machine-learning forecasting for Dengue epidemics - Comparing LS\u2122, random forest and lasso regression. medRxiv (2020)."},{"key":"e_1_3_2_2_20_1","volume-title":"Neural network based country wise risk prediction of COVID-19. arXiv preprint arXiv:2004.00959","author":"Pal R.","year":"2020","unstructured":"Pal , R. , Sekh , A. A. , Kar , S. , and Prasad , D. K . Neural network based country wise risk prediction of COVID-19. arXiv preprint arXiv:2004.00959 ( 2020 ). Pal, R., Sekh, A. A., Kar, S., and Prasad, D. K. Neural network based country wise risk prediction of COVID-19. arXiv preprint arXiv:2004.00959 (2020)."},{"key":"e_1_3_2_2_21_1","unstructured":"Park S. N. Cults and conservatives spread coronavirus in South Korea. https:\/\/foreignpolicy.com\/2020\/02\/27\/coronavirus-south-korea-cults-conservatives-china\/. Park S. N. Cults and conservatives spread coronavirus in South Korea. https:\/\/foreignpolicy.com\/2020\/02\/27\/coronavirus-south-korea-cults-conservatives-china\/."},{"key":"e_1_3_2_2_22_1","first-page":"3","article-title":"A review of epidemic forecasting using artificial neural networks","volume":"6","author":"Philemon M. D.","year":"2019","unstructured":"Philemon , M. D. , Ismail , Z. , and Dare , J . A review of epidemic forecasting using artificial neural networks . International Journal of Epidemiologic Research 6 , 3 ( 2019 ), 132--143. Philemon, M. D., Ismail, Z., and Dare, J. A review of epidemic forecasting using artificial neural networks. International Journal of Epidemiologic Research 6, 3 (2019), 132--143.","journal-title":"International Journal of Epidemiologic Research"},{"key":"e_1_3_2_2_23_1","volume-title":"COVID-19 epidemic analysis using machine learning and deep learning algorithms. medRxiv","author":"Punn N. S.","year":"2020","unstructured":"Punn , N. S. , Sonbhadra , S. K. , and Agarwal , S . COVID-19 epidemic analysis using machine learning and deep learning algorithms. medRxiv ( 2020 ). Punn, N. S., Sonbhadra, S. K., and Agarwal, S. COVID-19 epidemic analysis using machine learning and deep learning algorithms. medRxiv (2020)."},{"key":"e_1_3_2_2_24_1","first-page":"1917","volume-title":"Proceedings of Advances in Neural Information Processing Systems","author":"Shu J.","year":"2019","unstructured":"Shu , J. , Xie , Q. , Yi , L. , Zhao , Q. , Zhou , S. , Xu , Z. , and Meng , D . Meta-weight-net: Learning an explicit mapping for sample weighting . In Proceedings of Advances in Neural Information Processing Systems ( 2019 ), pp. 1917 -- 1928 . Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., and Meng, D. Meta-weight-net: Learning an explicit mapping for sample weighting. In Proceedings of Advances in Neural Information Processing Systems (2019), pp. 1917--1928."},{"key":"e_1_3_2_2_25_1","first-page":"1","article-title":"Dropout: A simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava N.","year":"2014","unstructured":"Srivastava , N. , Hinton , G. , Krizhevsky , A. , Sutskever , I. , and Salakhutdinov , R . Dropout: A simple way to prevent neural networks from overfitting . The Journal of Machine Learning Research 15 , 1 ( 2014 ), 1929--1958. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929--1958.","journal-title":"The Journal of Machine Learning Research"},{"key":"e_1_3_2_2_26_1","volume-title":"Modeling projections for COVID-19 pandemic by combining epidemiological, statistical, and neural network approaches. medRxiv","author":"Uhlig S.","year":"2020","unstructured":"Uhlig , S. , Nichani , K. , Uhlig , C. , and Simon , K . Modeling projections for COVID-19 pandemic by combining epidemiological, statistical, and neural network approaches. medRxiv ( 2020 ). Uhlig, S., Nichani, K., Uhlig, C., and Simon, K. Modeling projections for COVID-19 pandemic by combining epidemiological, statistical, and neural network approaches. medRxiv (2020)."},{"key":"e_1_3_2_2_27_1","first-page":"5998","volume-title":"Proceedings of Advances in Neural Information Processing Systems","author":"Vaswani A.","year":"2017","unstructured":"Vaswani , A. , Shazeer , N. , Parmar , N. , Uszkoreit , J. , Jones , L. , Gomez , A. N. , Kaiser , \u0141., and Polosukhin , I . Attention is all you need . In Proceedings of Advances in Neural Information Processing Systems ( 2017 ), pp. 5998 -- 6008 . Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, \u0141., and Polosukhin, I. Attention is all you need. In Proceedings of Advances in Neural Information Processing Systems (2017), pp. 5998--6008."},{"key":"e_1_3_2_2_28_1","doi-asserted-by":"publisher","DOI":"10.1145\/3209978.3210077"},{"key":"e_1_3_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.21037\/jtd.2020.02.64"},{"key":"e_1_3_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijantimicag.2020.105955"}],"event":{"name":"KDD '20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","location":"Virtual Event CA USA","acronym":"KDD '20","sponsor":["SIGMOD ACM Special Interest Group on Management of Data","SIGKDD ACM Special Interest Group on Knowledge Discovery in Data"]},"container-title":["Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3394486.3412864","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,2,23]],"date-time":"2022-02-23T20:19:39Z","timestamp":1645647579000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3394486.3412864"}},"subtitle":["Deep Learning Approach to Predict Inbound COVID-19 Patients and Case Study in South Korea"],"short-title":[],"issued":{"date-parts":[[2020,8,20]]},"references-count":30,"alternative-id":["10.1145\/3394486.3412864","10.1145\/3394486"],"URL":"http:\/\/dx.doi.org\/10.1145\/3394486.3412864","relation":{},"published":{"date-parts":[[2020,8,20]]}}}