{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,31]],"date-time":"2024-08-31T11:32:05Z","timestamp":1725103925104},"publisher-location":"New York, NY, USA","reference-count":50,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2020,7,25]]},"DOI":"10.1145\/3397271.3401078","type":"proceedings-article","created":{"date-parts":[[2020,7,25]],"date-time":"2020-07-25T07:50:08Z","timestamp":1595663408000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":33,"title":["Transfer Learning via Contextual Invariants for One-to-Many Cross-Domain Recommendation"],"prefix":"10.1145","author":[{"given":"Adit","family":"Krishnan","sequence":"first","affiliation":[{"name":"University of Illinois at Urbana-Champaign, Urbana, IL, USA"}]},{"given":"Mahashweta","family":"Das","sequence":"additional","affiliation":[{"name":"Visa Research, Palo Alto, CA, USA"}]},{"given":"Mangesh","family":"Bendre","sequence":"additional","affiliation":[{"name":"Visa Research, Palo Alto, CA, USA"}]},{"given":"Hao","family":"Yang","sequence":"additional","affiliation":[{"name":"Visa Research, Palo Alto, CA, USA"}]},{"given":"Hari","family":"Sundaram","sequence":"additional","affiliation":[{"name":"University of Illinois at Urbana-Champaign, Urbana, IL, USA"}]}],"member":"320","published-online":{"date-parts":[[2020,7,25]]},"reference":[{"key":"e_1_3_2_2_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/2043932.2043988"},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1145\/3159652.3159727"},{"key":"e_1_3_2_2_3_1","unstructured":"Haw-Shiuan Chang Erik Learned-Miller and Andrew McCallum. 2017. Active bias: Training more accurate neural networks by emphasizing high variance samples. In Advances in Neural Information Processing Systems. 1002--1012. Haw-Shiuan Chang Erik Learned-Miller and Andrew McCallum. 2017. Active bias: Training more accurate neural networks by emphasizing high variance samples. In Advances in Neural Information Processing Systems. 1002--1012."},{"key":"e_1_3_2_2_4_1","volume-title":"Federated meta-learning for recommendation. arXiv preprint arXiv:1802.07876","author":"Chen Fei","year":"2018","unstructured":"Fei Chen , Zhenhua Dong , Zhenguo Li , and Xiuqiang He. 2018. Federated meta-learning for recommendation. arXiv preprint arXiv:1802.07876 ( 2018 ). Fei Chen, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. 2018. Federated meta-learning for recommendation. arXiv preprint arXiv:1802.07876 (2018)."},{"key":"e_1_3_2_2_5_1","volume-title":"Reducing overfitting in deep networks by decorrelating representations. arXiv preprint arXiv:1511.06068","author":"Cogswell Michael","year":"2015","unstructured":"Michael Cogswell , Faruk Ahmed , Ross Girshick , Larry Zitnick , and Dhruv Batra . 2015. Reducing overfitting in deep networks by decorrelating representations. arXiv preprint arXiv:1511.06068 ( 2015 ). Michael Cogswell, Faruk Ahmed, Ross Girshick, Larry Zitnick, and Dhruv Batra. 2015. Reducing overfitting in deep networks by decorrelating representations. arXiv preprint arXiv:1511.06068 (2015)."},{"key":"e_1_3_2_2_6_1","volume-title":"Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908","author":"Doersch Carl","year":"2016","unstructured":"Carl Doersch . 2016. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 ( 2016 ). Carl Doersch. 2016. Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)."},{"key":"e_1_3_2_2_7_1","volume-title":"Sequential Scenario-Specific Meta Learner for Online Recommendation. arXiv preprint arXiv:1906.00391","author":"Du Zhengxiao","year":"2019","unstructured":"Zhengxiao Du , Xiaowei Wang , Hongxia Yang , Jingren Zhou , and Jie Tang . 2019. Sequential Scenario-Specific Meta Learner for Online Recommendation. arXiv preprint arXiv:1906.00391 ( 2019 ). Zhengxiao Du, Xiaowei Wang, Hongxia Yang, Jingren Zhou, and Jie Tang. 2019. Sequential Scenario-Specific Meta Learner for Online Recommendation. arXiv preprint arXiv:1906.00391 (2019)."},{"key":"e_1_3_2_2_8_1","doi-asserted-by":"publisher","DOI":"10.5555\/2887007.2887164"},{"key":"e_1_3_2_2_9_1","doi-asserted-by":"publisher","DOI":"10.5555\/3305381.3305498"},{"key":"e_1_3_2_2_10_1","volume-title":"Cross-domain Recommendation Without Sharing User-relevant Data. In The World Wide Web Conference. ACM, 491--502","author":"Gao Chen","year":"2019","unstructured":"Chen Gao , Xiangning Chen , Fuli Feng , Kai Zhao , Xiangnan He , Yong Li , and Depeng Jin . 2019 . Cross-domain Recommendation Without Sharing User-relevant Data. In The World Wide Web Conference. ACM, 491--502 . Chen Gao, Xiangning Chen, Fuli Feng, Kai Zhao, Xiangnan He, Yong Li, and Depeng Jin. 2019. Cross-domain Recommendation Without Sharing User-relevant Data. In The World Wide Web Conference. ACM, 491--502."},{"key":"e_1_3_2_2_11_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-40991-2_11"},{"key":"e_1_3_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"e_1_3_2_2_13_1","doi-asserted-by":"publisher","DOI":"10.1145\/3109859.3109882"},{"key":"e_1_3_2_2_14_1","doi-asserted-by":"publisher","DOI":"10.1145\/3077136.3080777"},{"key":"e_1_3_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.1145\/3038912.3052569"},{"key":"e_1_3_2_2_16_1","volume-title":"Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text. In The World Wide Web Conference. ACM, 2822--2829","author":"Hu Guangneng","year":"2019","unstructured":"Guangneng Hu , Yu Zhang , and Qiang Yang . 2019 . Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text. In The World Wide Web Conference. ACM, 2822--2829 . Guangneng Hu, Yu Zhang, and Qiang Yang. 2019. Transfer Meets Hybrid: A Synthetic Approach for Cross-Domain Collaborative Filtering with Text. In The World Wide Web Conference. ACM, 2822--2829."},{"key":"e_1_3_2_2_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623644"},{"key":"e_1_3_2_2_18_1","doi-asserted-by":"publisher","DOI":"10.1145\/3123266.3123361"},{"key":"e_1_3_2_2_19_1","unstructured":"Rie Johnson and Tong Zhang. 2013. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems. 315--323. Rie Johnson and Tong Zhang. 2013. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in neural information processing systems. 315--323."},{"key":"e_1_3_2_2_20_1","doi-asserted-by":"publisher","DOI":"10.1145\/1864708.1864727"},{"key":"e_1_3_2_2_21_1","volume-title":"Hadamard product for low-rank bilinear pooling. arXiv preprint arXiv:1610.04325","author":"Kim Jin-Hwa","year":"2016","unstructured":"Jin-Hwa Kim , Kyoung-Woon On , Woosang Lim , Jeonghee Kim , Jung-Woo Ha , and Byoung-Tak Zhang . 2016. Hadamard product for low-rank bilinear pooling. arXiv preprint arXiv:1610.04325 ( 2016 ). Jin-Hwa Kim, Kyoung-Woon On, Woosang Lim, Jeonghee Kim, Jung-Woo Ha, and Byoung-Tak Zhang. 2016. Hadamard product for low-rank bilinear pooling. arXiv preprint arXiv:1610.04325 (2016)."},{"key":"e_1_3_2_2_22_1","volume-title":"Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980","author":"Kingma Diederik P","year":"2014","unstructured":"Diederik P Kingma and Jimmy Ba . 2014 . Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014). Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)."},{"key":"e_1_3_2_2_23_1","volume-title":"Optimization by simulated annealing. science","author":"Kirkpatrick Scott","year":"1983","unstructured":"Scott Kirkpatrick , C Daniel Gelatt , and Mario P Vecchi . 1983. Optimization by simulated annealing. science , Vol. 220 , 4598 ( 1983 ), 671--680. Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Optimization by simulated annealing. science, Vol. 220, 4598 (1983), 671--680."},{"key":"e_1_3_2_2_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/3357384.3357898"},{"key":"e_1_3_2_2_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/3269206.3269264"},{"key":"e_1_3_2_2_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3330859"},{"key":"e_1_3_2_2_27_1","volume-title":"Twenty-First International Joint Conference on Artificial Intelligence.","author":"Li Bin","year":"2009","unstructured":"Bin Li , Qiang Yang , and Xiangyang Xue . 2009 . Can movies and books collaborate? cross-domain collaborative filtering for sparsity reduction . In Twenty-First International Joint Conference on Artificial Intelligence. Bin Li, Qiang Yang, and Xiangyang Xue. 2009. Can movies and books collaborate? cross-domain collaborative filtering for sparsity reduction. In Twenty-First International Joint Conference on Artificial Intelligence."},{"key":"e_1_3_2_2_28_1","volume-title":"Meta-SGD: Learning to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835","author":"Li Zhenguo","year":"2017","unstructured":"Zhenguo Li , Fengwei Zhou , Fei Chen , and Hang Li. 2017. Meta-SGD: Learning to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 ( 2017 ). Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-SGD: Learning to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017)."},{"key":"e_1_3_2_2_29_1","doi-asserted-by":"publisher","DOI":"10.1145\/3178876.3186150"},{"key":"e_1_3_2_2_30_1","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611972832.28"},{"key":"e_1_3_2_2_31_1","unstructured":"Mingsheng Long Han Zhu Jianmin Wang and Michael I Jordan. 2016. Unsupervised domain adaptation with residual transfer networks. In Advances in Neural Information Processing Systems. 136--144. Mingsheng Long Han Zhu Jianmin Wang and Michael I Jordan. 2016. Unsupervised domain adaptation with residual transfer networks. In Advances in Neural Information Processing Systems. 136--144."},{"key":"e_1_3_2_2_32_1","doi-asserted-by":"publisher","DOI":"10.5555\/3305890.3305909"},{"key":"e_1_3_2_2_33_1","volume-title":"Online batch selection for faster training of neural networks. arXiv preprint arXiv:1511.06343","author":"Loshchilov Ilya","year":"2015","unstructured":"Ilya Loshchilov and Frank Hutter . 2015. Online batch selection for faster training of neural networks. arXiv preprint arXiv:1511.06343 ( 2015 ). Ilya Loshchilov and Frank Hutter. 2015. Online batch selection for faster training of neural networks. arXiv preprint arXiv:1511.06343 (2015)."},{"key":"e_1_3_2_2_34_1","doi-asserted-by":"crossref","unstructured":"Tong Man Huawei Shen Xiaolong Jin and Xueqi Cheng. 2017. Cross-Domain Recommendation: An Embedding and Mapping Approach.. In IJCAI. 2464--2470. Tong Man Huawei Shen Xiaolong Jin and Xueqi Cheng. 2017. Cross-Domain Recommendation: An Embedding and Mapping Approach.. In IJCAI. 2464--2470.","DOI":"10.24963\/ijcai.2017\/343"},{"key":"e_1_3_2_2_35_1","doi-asserted-by":"publisher","DOI":"10.1145\/3269206.3271813"},{"key":"e_1_3_2_2_36_1","doi-asserted-by":"publisher","DOI":"10.5555\/2898607.2898644"},{"key":"e_1_3_2_2_37_1","doi-asserted-by":"publisher","DOI":"10.1145\/3240323.3240356"},{"key":"e_1_3_2_2_38_1","doi-asserted-by":"publisher","DOI":"10.1145\/3308558.3313733"},{"key":"e_1_3_2_2_39_1","volume-title":"Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434","author":"Radford Alec","year":"2015","unstructured":"Alec Radford , Luke Metz , and Soumith Chintala . 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 ( 2015 ). Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)."},{"key":"e_1_3_2_2_40_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00356"},{"key":"e_1_3_2_2_41_1","doi-asserted-by":"publisher","DOI":"10.1145\/3341161.3342859"},{"key":"e_1_3_2_2_42_1","volume-title":"Inf-VAE: A Variational Autoencoder Framework to Integrate Homophily and Influence in Diffusion Prediction. arXiv preprint arXiv:2001.00132","author":"Sankar Aravind","year":"2020","unstructured":"Aravind Sankar , Xinyang Zhang , Adit Krishnan , and Jiawei Han . 2020. Inf-VAE: A Variational Autoencoder Framework to Integrate Homophily and Influence in Diffusion Prediction. arXiv preprint arXiv:2001.00132 ( 2020 ). Aravind Sankar, Xinyang Zhang, Adit Krishnan, and Jiawei Han. 2020. Inf-VAE: A Variational Autoencoder Framework to Integrate Homophily and Influence in Diffusion Prediction. arXiv preprint arXiv:2001.00132 (2020)."},{"key":"e_1_3_2_2_43_1","volume-title":"Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research","author":"Srivastava Nitish","year":"2014","unstructured":"Nitish Srivastava , Geoffrey Hinton , Alex Krizhevsky , Ilya Sutskever , and Ruslan Salakhutdinov . 2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research , Vol. 15 , 1 ( 2014 ), 1929--1958. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, Vol. 15, 1 (2014), 1929--1958."},{"key":"e_1_3_2_2_44_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-49409-8_35"},{"key":"e_1_3_2_2_45_1","volume-title":"Meta-Transfer Learning for Few-Shot Learning. CoRR","author":"Sun Qianru","year":"2018","unstructured":"Qianru Sun , Yaoyao Liu , Tat-Seng Chua , and Bernt Schiele . 2018. Meta-Transfer Learning for Few-Shot Learning. CoRR , Vol. abs\/ 1812 .02391 ( 2018 ). arxiv: 1812.02391 http:\/\/arxiv.org\/abs\/1812.02391 Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. 2018. Meta-Transfer Learning for Few-Shot Learning. CoRR, Vol. abs\/1812.02391 (2018). arxiv: 1812.02391 http:\/\/arxiv.org\/abs\/1812.02391"},{"key":"e_1_3_2_2_46_1","volume-title":"Feature selection for classification: A review. Data classification: Algorithms and applications","author":"Tang Jiliang","year":"2014","unstructured":"Jiliang Tang , Salem Alelyani , and Huan Liu . 2014. Feature selection for classification: A review. Data classification: Algorithms and applications ( 2014 ), 37. Jiliang Tang, Salem Alelyani, and Huan Liu. 2014. Feature selection for classification: A review. Data classification: Algorithms and applications (2014), 37."},{"key":"e_1_3_2_2_47_1","unstructured":"Manasi Vartak Arvind Thiagarajan Conrado Miranda Jeshua Bratman and Hugo Larochelle. 2017. A meta-learning perspective on cold-start recommendations for items. In Advances in neural information processing systems. 6904--6914. Manasi Vartak Arvind Thiagarajan Conrado Miranda Jeshua Bratman and Hugo Larochelle. 2017. A meta-learning perspective on cold-start recommendations for items. In Advances in neural information processing systems. 6904--6914."},{"key":"e_1_3_2_2_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/3124791.3124792"},{"key":"e_1_3_2_2_49_1","doi-asserted-by":"publisher","DOI":"10.1145\/3289600.3290973"},{"key":"e_1_3_2_2_50_1","volume-title":"Attentional factorization machines: Learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617","author":"Xiao Jun","year":"2017","unstructured":"Jun Xiao , Hao Ye , Xiangnan He , Hanwang Zhang , Fei Wu , and Tat-Seng Chua . 2017. Attentional factorization machines: Learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617 ( 2017 ). Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua. 2017. Attentional factorization machines: Learning the weight of feature interactions via attention networks. arXiv preprint arXiv:1708.04617 (2017)."}],"event":{"name":"SIGIR '20: The 43rd International ACM SIGIR conference on research and development in Information Retrieval","location":"Virtual Event China","acronym":"SIGIR '20","sponsor":["SIGIR ACM Special Interest Group on Information Retrieval"]},"container-title":["Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3397271.3401078","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T10:05:19Z","timestamp":1673345119000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3397271.3401078"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7,25]]},"references-count":50,"alternative-id":["10.1145\/3397271.3401078","10.1145\/3397271"],"URL":"http:\/\/dx.doi.org\/10.1145\/3397271.3401078","relation":{},"subject":[],"published":{"date-parts":[[2020,7,25]]},"assertion":[{"value":"2020-07-25","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}