{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,7,21]],"date-time":"2022-07-21T00:41:02Z","timestamp":1658364062532},"publisher-location":"New York, NY, USA","reference-count":13,"publisher":"ACM","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,4,19]]},"DOI":"10.1145\/3442442.3453148","type":"proceedings-article","created":{"date-parts":[[2021,6,3]],"date-time":"2021-06-03T15:56:42Z","timestamp":1622735802000},"source":"Crossref","is-referenced-by-count":1,"title":["Optimizing AD Pruning of Sponsored Search with Reinforcement Learning"],"prefix":"10.1145","author":[{"given":"Yijiang","family":"Lian","sequence":"first","affiliation":[{"name":"Baidu, China"}]},{"given":"Zhijie","family":"Chen","sequence":"additional","affiliation":[{"name":"Baidu, China"}]},{"given":"Xin","family":"Pei","sequence":"additional","affiliation":[{"name":"Baidu, China"}]},{"given":"Shuang","family":"Li","sequence":"additional","affiliation":[{"name":"Baidu, China"}]},{"given":"Yifei","family":"Wang","sequence":"additional","affiliation":[{"name":"Peking University, China"}]},{"given":"Yuefeng","family":"Qiu","sequence":"additional","affiliation":[{"name":"Baidu, China"}]},{"given":"Zhiheng","family":"Zhang","sequence":"additional","affiliation":[{"name":"Baidu, China"}]},{"given":"Zhipeng","family":"Tao","sequence":"additional","affiliation":[{"name":"Baidu, China"}]},{"given":"Liang","family":"Yuan","sequence":"additional","affiliation":[{"name":"Baidu, China"}]},{"given":"Hanju","family":"Guan","sequence":"additional","affiliation":[{"name":"Baidu, China"}]},{"given":"Kefeng","family":"Zhang","sequence":"additional","affiliation":[{"name":"Baidu, China"}]},{"given":"Zhigang","family":"Li","sequence":"additional","affiliation":[{"name":"Baidu, China"}]},{"given":"Xiaochun","family":"Liu","sequence":"additional","affiliation":[{"name":"Baidu, China"}]}],"member":"320","published-online":{"date-parts":[[2021,6,3]]},"reference":[{"key":"e_1_3_2_1_1_1","unstructured":"Dzmitry Bahdanau Philemon Brakel Kelvin Xu Anirudh Goyal Ryan Lowe Joelle Pineau Aaron Courville and Yoshua Bengio. 2016. An actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086(2016). Dzmitry Bahdanau Philemon Brakel Kelvin Xu Anirudh Goyal Ryan Lowe Joelle Pineau Aaron Courville and Yoshua Bengio. 2016. An actor-critic algorithm for sequence prediction. arXiv preprint arXiv:1607.07086(2016)."},{"key":"e_1_3_2_1_2_1","unstructured":"Yoshua Bengio Andrea Lodi and Antoine Prouvost. 2018. Machine Learning for Combinatorial Optimization: a Methodological Tour d\u2019Horizon. CoRR abs\/1811.06128(2018). arxiv:1811.06128http:\/\/arxiv.org\/abs\/1811.06128 Yoshua Bengio Andrea Lodi and Antoine Prouvost. 2018. Machine Learning for Combinatorial Optimization: a Methodological Tour d\u2019Horizon. CoRR abs\/1811.06128(2018). arxiv:1811.06128http:\/\/arxiv.org\/abs\/1811.06128"},{"key":"e_1_3_2_1_3_1","unstructured":"Christian Buck Jannis Bulian Massimiliano Ciaramita Wojciech Gajewski Andrea Gesmundo Neil Houlsby and Wei Wang. 2017. Ask the right questions: Active question reformulation with reinforcement learning. arXiv preprint arXiv:1705.07830(2017). Christian Buck Jannis Bulian Massimiliano Ciaramita Wojciech Gajewski Andrea Gesmundo Neil Houlsby and Wei Wang. 2017. Ask the right questions: Active question reformulation with reinforcement learning. arXiv preprint arXiv:1705.07830(2017)."},{"key":"e_1_3_2_1_4_1","volume-title":"Deep Optimisation: Solving Combinatorial Optimisation Problems using Deep Neural Networks. CoRR abs\/1811.00784(2018). arxiv:1811.00784http:\/\/arxiv.org\/abs\/1811.00784","author":"Caldwell R.","year":"2018","unstructured":"J.\u00a0 R. Caldwell , Richard\u00a0 A. Watson , C. Thies , and Joshua\u00a0 D. Knowles . 2018 . Deep Optimisation: Solving Combinatorial Optimisation Problems using Deep Neural Networks. CoRR abs\/1811.00784(2018). arxiv:1811.00784http:\/\/arxiv.org\/abs\/1811.00784 J.\u00a0R. Caldwell, Richard\u00a0A. Watson, C. Thies, and Joshua\u00a0D. Knowles. 2018. Deep Optimisation: Solving Combinatorial Optimisation Problems using Deep Neural Networks. CoRR abs\/1811.00784(2018). arxiv:1811.00784http:\/\/arxiv.org\/abs\/1811.00784"},{"key":"e_1_3_2_1_5_1","unstructured":"Jelena Gligorijevic Djordje Gligorijevic Ivan Stojkovic Xiao Bai Amit Goyal and Zoran Obradovic. 2018. Deeply Supervised Semantic Model for Click-Through Rate Prediction in Sponsored Search. arXiv preprint arXiv:1803.10739(2018). Jelena Gligorijevic Djordje Gligorijevic Ivan Stojkovic Xiao Bai Amit Goyal and Zoran Obradovic. 2018. Deeply Supervised Semantic Model for Click-Through Rate Prediction in Sponsored Search. arXiv preprint arXiv:1803.10739(2018)."},{"key":"e_1_3_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1002\/asmb.2209"},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/3219819.3219850"},{"key":"e_1_3_2_1_8_1","unstructured":"Andrew\u00a0Y Ng Daishi Harada and Stuart Russell. 1999. Policy invariance under reward transformations: Theory and application to reward shaping. In ICML Vol.\u00a099. 278\u2013287. Andrew\u00a0Y Ng Daishi Harada and Stuart Russell. 1999. Policy invariance under reward transformations: Theory and application to reward shaping. In ICML Vol.\u00a099. 278\u2013287."},{"key":"e_1_3_2_1_9_1","volume-title":"Julian Schrittwieser, Ioannis Antonoglou","author":"Silver David","year":"2016","unstructured":"David Silver , Aja Huang , Chris\u00a0 J Maddison , Arthur Guez , Laurent Sifre , George Van Den\u00a0Driessche , Julian Schrittwieser, Ioannis Antonoglou , Veda Panneershelvam, Marc Lanctot , 2016 . Mastering the game of Go with deep neural networks and tree search. nature 529, 7587 (2016), 484\u2013489. David Silver, Aja Huang, Chris\u00a0J Maddison, Arthur Guez, Laurent Sifre, George Van Den\u00a0Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, 2016. Mastering the game of Go with deep neural networks and tree search. nature 529, 7587 (2016), 484\u2013489."},{"key":"e_1_3_2_1_10_1","unstructured":"Richard\u00a0S Sutton David\u00a0A McAllester Satinder\u00a0P Singh and Yishay Mansour. 2000. Policy gradient methods for reinforcement learning with function approximation. In Advances in neural information processing systems. 1057\u20131063. Richard\u00a0S Sutton David\u00a0A McAllester Satinder\u00a0P Singh and Yishay Mansour. 2000. Policy gradient methods for reinforcement learning with function approximation. In Advances in neural information processing systems. 1057\u20131063."},{"key":"e_1_3_2_1_11_1","unstructured":"Lijun Wu Fei Tian Tao Qin Jianhuang Lai and Tie-Yan Liu. 2018. A study of reinforcement learning for neural machine translation. arXiv preprint arXiv:1808.08866(2018). Lijun Wu Fei Tian Tao Qin Jianhuang Lai and Tie-Yan Liu. 2018. A study of reinforcement learning for neural machine translation. arXiv preprint arXiv:1808.08866(2018)."},{"key":"e_1_3_2_1_12_1","volume-title":"EENMF: An End-to-End Neural Matching Framework for E-Commerce Sponsored Search. arXiv preprint arXiv:1812.01190(2018).","author":"Wu Wenjin","year":"2018","unstructured":"Wenjin Wu , Guojun Liu , Hui Ye , Chenshuang Zhang , Tianshu Wu , Daorui Xiao , Wei Lin , Kaipeng Liu , and Xiaoyu Zhu . 2018 . EENMF: An End-to-End Neural Matching Framework for E-Commerce Sponsored Search. arXiv preprint arXiv:1812.01190(2018). Wenjin Wu, Guojun Liu, Hui Ye, Chenshuang Zhang, Tianshu Wu, Daorui Xiao, Wei Lin, Kaipeng Liu, and Xiaoyu Zhu. 2018. EENMF: An End-to-End Neural Matching Framework for E-Commerce Sponsored Search. arXiv preprint arXiv:1812.01190(2018)."},{"key":"e_1_3_2_1_13_1","unstructured":"Yonghui Wu Mike Schuster Zhifeng Chen Quoc\u00a0V Le Mohammad Norouzi Wolfgang Macherey Maxim Krikun Yuan Cao Qin Gao Klaus Macherey 2016. Google\u2019s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144(2016). Yonghui Wu Mike Schuster Zhifeng Chen Quoc\u00a0V Le Mohammad Norouzi Wolfgang Macherey Maxim Krikun Yuan Cao Qin Gao Klaus Macherey 2016. Google\u2019s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144(2016)."}],"event":{"name":"WWW '21: The Web Conference 2021","location":"Ljubljana Slovenia","acronym":"WWW '21","sponsor":["SIGWEB ACM Special Interest Group on Hypertext, Hypermedia, and Web"]},"container-title":["Companion Proceedings of the Web Conference 2021"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3442442.3453148","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,7,21]],"date-time":"2022-07-21T00:19:59Z","timestamp":1658362799000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3442442.3453148"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,4,19]]},"references-count":13,"alternative-id":["10.1145\/3442442.3453148","10.1145\/3442442"],"URL":"http:\/\/dx.doi.org\/10.1145\/3442442.3453148","relation":{},"published":{"date-parts":[[2021,4,19]]}}}