{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,4,14]],"date-time":"2022-04-14T05:11:03Z","timestamp":1649913063239},"publisher-location":"New York, NY, USA","reference-count":17,"publisher":"ACM","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,12,22]]},"DOI":"10.1145\/3508546.3508568","type":"proceedings-article","created":{"date-parts":[[2022,2,25]],"date-time":"2022-02-25T11:53:44Z","timestamp":1645790024000},"source":"Crossref","is-referenced-by-count":0,"title":["A Weight-Based Channel Pruning Algorithm for Depth-Wise Separable Convolution Unit"],"prefix":"10.1145","author":[{"given":"Yizhe","family":"Fan","sequence":"first","affiliation":[{"name":"Xi'an Microelectronics Technology Institute, China"}]},{"given":"Xuehan","family":"Tang","sequence":"additional","affiliation":[{"name":"Xi'an Microelectronics Technology Institute, China"}]},{"given":"Zhong","family":"Ma","sequence":"additional","affiliation":[{"name":"Xi'an Microelectronics Technology Institute, China"}]}],"member":"320","published-online":{"date-parts":[[2022,2,25]]},"reference":[{"key":"e_1_3_2_2_1_1","doi-asserted-by":"publisher","DOI":"10.1145\/3005348"},{"key":"e_1_3_2_2_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.195"},{"key":"e_1_3_2_2_3_1","volume-title":"Dsd: Dense-sparse-dense training for deep neural networks. arXiv preprint arXiv:1607.04381(2016).","author":"Han Song","year":"2016","unstructured":"Song Han , Jeff Pool , Sharan Narang , Huizi Mao , Enhao Gong , Shijian Tang , Erich Elsen , Peter Vajda , Manohar Paluri , John Tran , 2016 . Dsd: Dense-sparse-dense training for deep neural networks. arXiv preprint arXiv:1607.04381(2016). Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich Elsen, Peter Vajda, Manohar Paluri, John Tran, 2016. Dsd: Dense-sparse-dense training for deep neural networks. arXiv preprint arXiv:1607.04381(2016)."},{"key":"e_1_3_2_2_4_1","unstructured":"Song Han Jeff Pool John Tran and William\u00a0J Dally. 2015. Learning both weights and connections for efficient neural networks. arXiv preprint arXiv:1506.02626(2015). Song Han Jeff Pool John Tran and William\u00a0J Dally. 2015. Learning both weights and connections for efficient neural networks. arXiv preprint arXiv:1506.02626(2015)."},{"key":"e_1_3_2_2_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.155"},{"key":"e_1_3_2_2_6_1","volume-title":"Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861(2017).","author":"Howard G","year":"2017","unstructured":"Andrew\u00a0 G Howard , Menglong Zhu , Bo Chen , Dmitry Kalenichenko , Weijun Wang , Tobias Weyand , Marco Andreetto , and Hartwig Adam . 2017 . Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861(2017). Andrew\u00a0G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861(2017)."},{"key":"e_1_3_2_2_7_1","unstructured":"Forrest\u00a0N Iandola Song Han Matthew\u00a0W Moskewicz Khalid Ashraf William\u00a0J Dally and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv preprint arXiv:1602.07360(2016). Forrest\u00a0N Iandola Song Han Matthew\u00a0W Moskewicz Khalid Ashraf William\u00a0J Dally and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size. arXiv preprint arXiv:1602.07360(2016)."},{"key":"e_1_3_2_2_8_1","unstructured":"Farkhondeh Kiaee Christian Gagn\u00e9 and Mahdieh Abbasi. 2016. Alternating direction method of multipliers for sparse convolutional neural networks. arXiv preprint arXiv:1611.01590(2016). Farkhondeh Kiaee Christian Gagn\u00e9 and Mahdieh Abbasi. 2016. Alternating direction method of multipliers for sparse convolutional neural networks. arXiv preprint arXiv:1611.01590(2016)."},{"key":"e_1_3_2_2_9_1","volume-title":"Learning Multiple Layers of Features from Tiny Images. Master\u2019s thesis","author":"Krizhevsky A","unstructured":"A Krizhevsky . 2009. Learning Multiple Layers of Features from Tiny Images. Master\u2019s thesis , University of Tront(2009) . A Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Master\u2019s thesis, University of Tront(2009)."},{"key":"e_1_3_2_2_10_1","volume-title":"Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25","author":"Krizhevsky Alex","year":"2012","unstructured":"Alex Krizhevsky , Ilya Sutskever , and Geoffrey\u00a0 E Hinton . 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25 ( 2012 ), 1097\u20131105. Alex Krizhevsky, Ilya Sutskever, and Geoffrey\u00a0E Hinton. 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25 (2012), 1097\u20131105."},{"key":"e_1_3_2_2_11_1","doi-asserted-by":"crossref","unstructured":"Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method. The annals of mathematical statistics(1951) 400\u2013407. Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method. The annals of mathematical statistics(1951) 400\u2013407.","DOI":"10.1214\/aoms\/1177729586"},{"key":"e_1_3_2_2_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00474"},{"key":"e_1_3_2_2_13_1","unstructured":"Laurent Sifre and St\u00e9phane Mallat. 2014. Rigid-motion scattering for texture classification. arXiv preprint arXiv:1403.1687(2014). Laurent Sifre and St\u00e9phane Mallat. 2014. Rigid-motion scattering for texture classification. arXiv preprint arXiv:1403.1687(2014)."},{"key":"e_1_3_2_2_14_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.2517-6161.1996.tb02080.x"},{"key":"e_1_3_2_2_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2956976"},{"key":"e_1_3_2_2_16_1","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00716"},{"key":"e_1_3_2_2_17_1","unstructured":"Barret Zoph and Quoc\u00a0V Le. 2016. Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578(2016). Barret Zoph and Quoc\u00a0V Le. 2016. Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578(2016)."}],"event":{"name":"ACAI'21: 2021 4th International Conference on Algorithms, Computing and Artificial Intelligence","location":"Sanya China","acronym":"ACAI'21"},"container-title":["2021 4th International Conference on Algorithms, Computing and Artificial Intelligence"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3508546.3508568","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,4,14]],"date-time":"2022-04-14T04:55:59Z","timestamp":1649912159000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3508546.3508568"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,22]]},"references-count":17,"alternative-id":["10.1145\/3508546.3508568","10.1145\/3508546"],"URL":"http:\/\/dx.doi.org\/10.1145\/3508546.3508568","relation":{},"published":{"date-parts":[[2021,12,22]]}}}