{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,4,18]],"date-time":"2023-04-18T00:54:00Z","timestamp":1681779240626},"publisher-location":"New York, NY, USA","reference-count":66,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2022,8,14]]},"DOI":"10.1145\/3534678.3539343","type":"proceedings-article","created":{"date-parts":[[2022,8,12]],"date-time":"2022-08-12T19:06:41Z","timestamp":1660331201000},"update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":3,"title":["Motif Prediction with Graph Neural Networks"],"prefix":"10.1145","author":[{"given":"Maciej","family":"Besta","sequence":"first","affiliation":[{"name":"ETH Z\u00fcrich, Zurich, Switzerland"}]},{"given":"Raphael","family":"Grob","sequence":"additional","affiliation":[{"name":"ETH Z\u00fcrich, Zurich, Switzerland"}]},{"given":"Cesare","family":"Miglioli","sequence":"additional","affiliation":[{"name":"University of Geneva, Geneva, Switzerland"}]},{"given":"Nicola","family":"Bernold","sequence":"additional","affiliation":[{"name":"ETH Z\u00fcrich, Zurich, Switzerland"}]},{"given":"Grzegorz","family":"Kwasniewski","sequence":"additional","affiliation":[{"name":"ETH Z\u00fcrich, Zurich, Switzerland"}]},{"given":"Gabriel","family":"Gjini","sequence":"additional","affiliation":[{"name":"ETH Z\u00fcrich, Zurich, Switzerland"}]},{"given":"Raghavendra","family":"Kanakagiri","sequence":"additional","affiliation":[{"name":"University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, USA"}]},{"given":"Saleh","family":"Ashkboos","sequence":"additional","affiliation":[{"name":"ETH Zurich, Zurich, Switzerland"}]},{"given":"Lukas","family":"Gianinazzi","sequence":"additional","affiliation":[{"name":"ETH Z\u00fcrich, Zurich, Switzerland"}]},{"given":"Nikoli","family":"Dryden","sequence":"additional","affiliation":[{"name":"ETH Z\u00fcrich, Zurich, Switzerland"}]},{"given":"Torsten","family":"Hoefler","sequence":"additional","affiliation":[{"name":"ETH Z\u00fcrich, Zurich, Switzerland"}]}],"member":"320","published-online":{"date-parts":[[2022,8,14]]},"reference":[{"key":"e_1_3_2_1_1_1","volume-title":"ECML PKDD","author":"Abuoda G.","year":"2019","unstructured":"G. Abuoda Link prediction via higher-order motif features . In ECML PKDD , 2019 . G. Abuoda et al. Link prediction via higher-order motif features. In ECML PKDD, 2019."},{"key":"e_1_3_2_1_2_1","volume-title":"Friends and neighbors on the web. Social networks","author":"Adamic L. A.","year":"2003","unstructured":"L. A. Adamic and E. Adar . Friends and neighbors on the web. Social networks , 2003 . L. A. Adamic and E. Adar. Friends and neighbors on the web. Social networks, 2003."},{"key":"e_1_3_2_1_3_1","volume-title":"SDM06: workshop on link analysis, counter-terrorism and security","author":"Al M.","year":"2006","unstructured":"M. Al Hasan et al. Link prediction using supervised learning . In SDM06: workshop on link analysis, counter-terrorism and security , 2006 . M. Al Hasan et al. Link prediction using supervised learning. In SDM06: workshop on link analysis, counter-terrorism and security, 2006."},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-8462-3_9"},{"key":"e_1_3_2_1_5_1","volume-title":"Pajek datasets","author":"Batagelj V.","year":"2006","unstructured":"V. Batagelj and A. Mrvar . Pajek datasets , 2006 . http:\/\/vlado.fmf.uni-lj.si\/pub\/networks\/data\/. V. Batagelj and A. Mrvar. Pajek datasets, 2006. http:\/\/vlado.fmf.uni-lj.si\/pub\/networks\/data\/."},{"key":"e_1_3_2_1_6_1","volume-title":"Science","author":"Benson A. R.","year":"2016","unstructured":"A. R. Benson Higher-order organization of complex networks . Science , 2016 . A. R. Benson et al. Higher-order organization of complex networks. Science, 2016."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.1800683115"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1145\/3078597.3078616"},{"key":"e_1_3_2_1_9_1","first-page":"1","volume-title":"ACM\/IEEE Supercomputing","author":"Besta M.","year":"2019","unstructured":"M. Besta : Practical lossy graph compression for approximate graph processing, storage, and analytics . In ACM\/IEEE Supercomputing , pages 1 -- 25 , 2019 . M. Besta et al. Slim graph: Practical lossy graph compression for approximate graph processing, storage, and analytics. In ACM\/IEEE Supercomputing, pages 1--25, 2019."},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPS47924.2020.00118"},{"key":"e_1_3_2_1_11_1","doi-asserted-by":"publisher","DOI":"10.1109\/SC41405.2020.00103"},{"key":"e_1_3_2_1_12_1","volume-title":"Graphminesuite: Enabling high-performance and programmable graph mining algorithms with set algebra. arXiv preprint arXiv:2103.03653","author":"Besta M.","year":"2021","unstructured":"M. Besta Graphminesuite: Enabling high-performance and programmable graph mining algorithms with set algebra. arXiv preprint arXiv:2103.03653 , 2021 . M. Besta et al. Graphminesuite: Enabling high-performance and programmable graph mining algorithms with set algebra. arXiv preprint arXiv:2103.03653, 2021."},{"key":"e_1_3_2_1_13_1","volume-title":"Sisa: Set-centric instruction set architecture for graph mining on processing-inmemory systems. arXiv preprint arXiv:2104.07582","author":"Besta M.","year":"2021","unstructured":"M. Besta Sisa: Set-centric instruction set architecture for graph mining on processing-inmemory systems. arXiv preprint arXiv:2104.07582 , 2021 . M. Besta et al. Sisa: Set-centric instruction set architecture for graph mining on processing-inmemory systems. arXiv preprint arXiv:2104.07582, 2021."},{"key":"e_1_3_2_1_14_1","volume-title":"IEEE TPDS","author":"Besta M.","year":"2022","unstructured":"M. Besta Practice of streaming processing of dynamic graphs: Concepts, models, and systems . IEEE TPDS , 2022 . M. Besta et al. Practice of streaming processing of dynamic graphs: Concepts, models, and systems. IEEE TPDS, 2022."},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICAIS.2009.39"},{"issue":"4","key":"e_1_3_2_1_16_1","first-page":"496","article-title":"The combinatorial blas: Design, implementation, and applications","volume":"25","author":"Bulu\u00e7 A.","year":"2011","unstructured":"A. Bulu\u00e7 and J. R. Gilbert . The combinatorial blas: Design, implementation, and applications . IJHPCA , 25 ( 4 ): 496 -- 509 , 2011 . A. Bulu\u00e7 and J. R. Gilbert. The combinatorial blas: Design, implementation, and applications. IJHPCA, 25(4):496--509, 2011.","journal-title":"IJHPCA"},{"key":"e_1_3_2_1_17_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2975067"},{"key":"e_1_3_2_1_18_1","volume-title":"Graph mining: Laws, generators, and algorithms. ACM computing surveys (CSUR), 38(1):2","author":"Chakrabarti D.","year":"2006","unstructured":"D. Chakrabarti and C. Faloutsos . Graph mining: Laws, generators, and algorithms. ACM computing surveys (CSUR), 38(1):2 , 2006 . D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM computing surveys (CSUR), 38(1):2, 2006."},{"key":"e_1_3_2_1_19_1","volume-title":"Bridging the gap between spatial and spectral domains: A survey on graph neural networks. arXiv preprint arXiv:2002.11867","author":"Chen Z.","year":"2020","unstructured":"Z. Chen Bridging the gap between spatial and spectral domains: A survey on graph neural networks. arXiv preprint arXiv:2002.11867 , 2020 . Z. Chen et al. Bridging the gap between spatial and spectral domains: A survey on graph neural networks. arXiv preprint arXiv:2002.11867, 2020."},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.5555\/1050985"},{"key":"e_1_3_2_1_21_1","unstructured":"CSCS. Swiss national supercomputing center 2021. https:\/\/cscs.ch. CSCS. Swiss national supercomputing center 2021. https:\/\/cscs.ch."},{"key":"e_1_3_2_1_22_1","volume-title":"Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428","author":"Fey M.","year":"2019","unstructured":"M. Fey and J. E. Lenssen . Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428 , 2019 . M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019."},{"key":"e_1_3_2_1_23_1","volume-title":"ICLR","author":"Fey M.","year":"2019","unstructured":"M. Fey and J. E. Lenssen . Fast graph representation learning with pytorch geometric . In ICLR , 2019 . M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch geometric. In ICLR, 2019."},{"key":"e_1_3_2_1_24_1","doi-asserted-by":"publisher","DOI":"10.1145\/3178487.3178504"},{"key":"e_1_3_2_1_25_1","first-page":"721","volume-title":"VLDB","author":"Gibson D.","year":"2005","unstructured":"D. Gibson , R. Kumar , and A. Tomkins . Discovering large dense subgraphs in massive graphs . In VLDB , pages 721 -- 732 , 2005 . D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive graphs. In VLDB, pages 721--732, 2005."},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939754"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1145\/1014052.1014072"},{"key":"e_1_3_2_1_28_1","volume-title":"Featgraph: A flexible and efficient backend for graph neural network systems. arXiv preprint arXiv:2008.11359","author":"Hu Y.","year":"2020","unstructured":"Y. Hu Featgraph: A flexible and efficient backend for graph neural network systems. arXiv preprint arXiv:2008.11359 , 2020 . Y. Hu et al. Featgraph: A flexible and efficient backend for graph neural network systems. arXiv preprint arXiv:2008.11359, 2020."},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01768-2_13"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1017\/S0269888912000331"},{"key":"e_1_3_2_1_31_1","volume-title":"Temporal motifs reveal the dynamics of editor","author":"Jurgens D.","year":"2012","unstructured":"D. Jurgens and T.-C. Lu . Temporal motifs reveal the dynamics of editor interactions in wikipedia. In AAAI ICWSM , volume 6 , 2012 . D. Jurgens and T.-C. Lu. Temporal motifs reveal the dynamics of editor interactions in wikipedia. In AAAI ICWSM, volume 6, 2012."},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1007\/BF02289026"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1109\/HPEC.2016.7761646"},{"key":"e_1_3_2_1_34_1","doi-asserted-by":"publisher","DOI":"10.1088\/1742-5468\/2011\/11\/P11005"},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-36461-7_6"},{"key":"e_1_3_2_1_36_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-6045-0_10"},{"key":"e_1_3_2_1_37_1","volume-title":"Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint arXiv:2006.15704","author":"Li S.","year":"2020","unstructured":"S. Li Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint arXiv:2006.15704 , 2020 . S. Li et al. Pytorch distributed: Experiences on accelerating data parallel training. arXiv preprint arXiv:2006.15704, 2020."},{"key":"e_1_3_2_1_38_1","volume-title":"Genome Informatics","author":"Li X.-L.","year":"2005","unstructured":"X.-L. Li Interaction graph mining for protein complexes using local clique merging . Genome Informatics , 2005 . X.-L. Li et al. Interaction graph mining for protein complexes using local clique merging. Genome Informatics, 2005."},{"key":"e_1_3_2_1_39_1","doi-asserted-by":"publisher","DOI":"10.1145\/3289600.3290988"},{"key":"e_1_3_2_1_40_1","volume-title":"Link prediction in complex networks: A survey. Physica A: statistical mechanics and its applications, 390(6):1150--1170","author":"L\u00fc L.","year":"2011","unstructured":"L. L\u00fc and T. Zhou . Link prediction in complex networks: A survey. Physica A: statistical mechanics and its applications, 390(6):1150--1170 , 2011 . L. L\u00fc and T. Zhou. Link prediction in complex networks: A survey. Physica A: statistical mechanics and its applications, 390(6):1150--1170, 2011."},{"key":"e_1_3_2_1_41_1","volume-title":"A survey of link prediction in complex networks. ACM computing surveys (CSUR), 49(4):1--33","author":"Mart\u00ednez V.","year":"2016","unstructured":"V. Mart\u00ednez , F. Berzal , and J.-C. Cubero . A survey of link prediction in complex networks. ACM computing surveys (CSUR), 49(4):1--33 , 2016 . V. Mart\u00ednez, F. Berzal, and J.-C. Cubero. A survey of link prediction in complex networks. ACM computing surveys (CSUR), 49(4):1--33, 2016."},{"key":"e_1_3_2_1_42_1","volume-title":"Ray: A distributed framework for emerging ai applications. arXiv preprint arXiv:1712.05889","author":"Moritz P.","year":"2017","unstructured":"P. Moritz Ray: A distributed framework for emerging ai applications. arXiv preprint arXiv:1712.05889 , 2017 . P. Moritz et al. Ray: A distributed framework for emerging ai applications. arXiv preprint arXiv:1712.05889, 2017."},{"key":"e_1_3_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1145\/3341161.3342897"},{"key":"e_1_3_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1007\/s13278-020-00671-6"},{"key":"e_1_3_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1145\/3018661.3018731"},{"key":"e_1_3_2_1_46_1","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623732"},{"key":"e_1_3_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2015.03.198"},{"key":"e_1_3_2_1_48_1","volume-title":"The future is big graphs! a community view on graph processing systems. arXiv preprint arXiv:2012.06171","author":"Sakr S.","year":"2020","unstructured":"S. Sakr The future is big graphs! a community view on graph processing systems. arXiv preprint arXiv:2012.06171 , 2020 . S. Sakr et al. The future is big graphs! a community view on graph processing systems. arXiv preprint arXiv:2012.06171, 2020."},{"key":"e_1_3_2_1_49_1","volume-title":"A survey on the expressive power of graph neural networks. arXiv preprint arXiv:2003.04078","author":"Sato R.","year":"2020","unstructured":"R. Sato . A survey on the expressive power of graph neural networks. arXiv preprint arXiv:2003.04078 , 2020 . R. Sato. A survey on the expressive power of graph neural networks. arXiv preprint arXiv:2003.04078, 2020."},{"key":"e_1_3_2_1_50_1","volume-title":"The graph neural network model","author":"Scarselli F.","year":"2008","unstructured":"F. Scarselli The graph neural network model . IEEE TNN , 2008 . F. Scarselli et al. The graph neural network model. IEEE TNN, 2008."},{"key":"e_1_3_2_1_51_1","volume-title":"NeurIPS","author":"Taskar B.","year":"2004","unstructured":"B. Taskar Link prediction in relational data . In NeurIPS , 2004 . B. Taskar et al. Link prediction in relational data. In NeurIPS, 2004."},{"key":"e_1_3_2_1_52_1","volume-title":"Attention-based graph neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735","author":"Thekumparampil K. K.","year":"2018","unstructured":"K. K. Thekumparampil , C. Wang , S. Oh , and L.-J. Li . Attention-based graph neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735 , 2018 . K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li. Attention-based graph neural network for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018."},{"key":"e_1_3_2_1_53_1","doi-asserted-by":"publisher","DOI":"10.1002\/widm.1199"},{"key":"e_1_3_2_1_54_1","doi-asserted-by":"publisher","DOI":"10.1038\/nature750"},{"key":"e_1_3_2_1_55_1","volume-title":"Nature","author":"Watts D. J.","year":"1998","unstructured":"D. J. Watts and S. H. Strogatz . Collective dynamics of 'small-world'networks . Nature , 1998 . D. J. Watts and S. H. Strogatz. Collective dynamics of 'small-world'networks. Nature, 1998."},{"key":"e_1_3_2_1_56_1","volume-title":"Graph neural networks in recommender systems: a survey. arXiv preprint arXiv:2011.02260","author":"Sun F.","year":"2020","unstructured":"S.Wu, F. Sun , W. Zhang , and B. Cui . Graph neural networks in recommender systems: a survey. arXiv preprint arXiv:2011.02260 , 2020 . S.Wu, F. Sun,W. Zhang, and B. Cui. Graph neural networks in recommender systems: a survey. arXiv preprint arXiv:2011.02260, 2020."},{"key":"e_1_3_2_1_57_1","doi-asserted-by":"publisher","DOI":"10.1145\/3447786.3456247"},{"key":"e_1_3_2_1_58_1","volume-title":"IEEE TNNLS","author":"Wu Z.","year":"2020","unstructured":"Z. Wu A comprehensive survey on graph neural networks . IEEE TNNLS , 2020 . Z. Wu et al. A comprehensive survey on graph neural networks. IEEE TNNLS, 2020."},{"key":"e_1_3_2_1_59_1","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3330961"},{"key":"e_1_3_2_1_60_1","volume-title":"Agl: a scalable system for industrial-purpose graph machine learning. arXiv preprint arXiv:2003.02454","author":"Zhang D.","year":"2020","unstructured":"D. Zhang Agl: a scalable system for industrial-purpose graph machine learning. arXiv preprint arXiv:2003.02454 , 2020 . D. Zhang et al. Agl: a scalable system for industrial-purpose graph machine learning. arXiv preprint arXiv:2003.02454, 2020."},{"key":"e_1_3_2_1_61_1","volume-title":"Link prediction based on graph neural networks. arXiv preprint arXiv:1802.09691","author":"Zhang M.","year":"2018","unstructured":"M. Zhang and Y. Chen . Link prediction based on graph neural networks. arXiv preprint arXiv:1802.09691 , 2018 . M. Zhang and Y. Chen. Link prediction based on graph neural networks. arXiv preprint arXiv:1802.09691, 2018."},{"key":"e_1_3_2_1_62_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v32i1.11782"},{"key":"e_1_3_2_1_63_1","volume-title":"Revisiting graph neural networks for link prediction. arXiv preprint arXiv:2010.16103","author":"Zhang M.","year":"2020","unstructured":"M. Zhang , P. Li , Y. Xia , K.Wang, and L. Jin . Revisiting graph neural networks for link prediction. arXiv preprint arXiv:2010.16103 , 2020 . M. Zhang, P. Li, Y. Xia, K.Wang, and L. Jin. Revisiting graph neural networks for link prediction. arXiv preprint arXiv:2010.16103, 2020."},{"key":"e_1_3_2_1_64_1","volume-title":"IEEE TKDM","author":"Zhang Z.","year":"2020","unstructured":"Z. Zhang , P. Cui , and W. Zhu . Deep learning on graphs: A survey . IEEE TKDM , 2020 . Z. Zhang, P. Cui, and W. Zhu. Deep learning on graphs: A survey. IEEE TKDM, 2020."},{"key":"e_1_3_2_1_65_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.aiopen.2021.01.001"},{"key":"e_1_3_2_1_66_1","volume-title":"Aligraph: A comprehensive graph neural network platform. arXiv preprint arXiv:1902.08730","author":"Zhu R.","year":"2019","unstructured":"R. Zhu Aligraph: A comprehensive graph neural network platform. arXiv preprint arXiv:1902.08730 , 2019 . R. Zhu et al. Aligraph: A comprehensive graph neural network platform. arXiv preprint arXiv:1902.08730, 2019."}],"event":{"name":"KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining","location":"Washington DC USA","acronym":"KDD '22","sponsor":["SIGMOD ACM Special Interest Group on Management of Data","SIGKDD ACM Special Interest Group on Knowledge Discovery in Data"]},"container-title":["Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3534678.3539343","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,1,11]],"date-time":"2023-01-11T05:29:30Z","timestamp":1673414970000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3534678.3539343"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8,14]]},"references-count":66,"alternative-id":["10.1145\/3534678.3539343","10.1145\/3534678"],"URL":"http:\/\/dx.doi.org\/10.1145\/3534678.3539343","relation":{},"published":{"date-parts":[[2022,8,14]]},"assertion":[{"value":"2022-08-14","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}