{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T22:42:45Z","timestamp":1726440165261},"publisher-location":"New York, NY, USA","reference-count":40,"publisher":"ACM","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":[],"published-print":{"date-parts":[[2023,11,27]]},"DOI":"10.1145\/3604237.3626910","type":"proceedings-article","created":{"date-parts":[[2023,11,25]],"date-time":"2023-11-25T23:09:47Z","timestamp":1700953787000},"page":"235-243","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":1,"title":["The Network of Mutual Funds: A Dynamic Heterogeneous Graph Neural Network for Estimating Mutual Funds Performance"],"prefix":"10.1145","author":[{"ORCID":"http:\/\/orcid.org\/0009-0003-7675-663X","authenticated-orcid":false,"given":"Siqi","family":"Jiang","sequence":"first","affiliation":[{"name":"New Jersey Institute of Technology, US"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3745-5194","authenticated-orcid":false,"given":"Ajim","family":"Uddin","sequence":"additional","affiliation":[{"name":"New Jersey Institute of Technology, US"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6059-4267","authenticated-orcid":false,"given":"Zhi","family":"Wei","sequence":"additional","affiliation":[{"name":"New Jersey Institute of Technology, US"}]},{"ORCID":"http:\/\/orcid.org\/0009-0005-3393-7101","authenticated-orcid":false,"given":"Dantong","family":"Yu","sequence":"additional","affiliation":[{"name":"New Jersey Institute of Technology, US"}]}],"member":"320","published-online":{"date-parts":[[2023,11,25]]},"reference":[{"key":"e_1_3_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.1111\/jofi.12263"},{"volume-title":"Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203","year":"2013","author":"Bruna Joan","key":"e_1_3_2_1_2_1","unstructured":"Joan Bruna , Wojciech Zaremba , Arthur Szlam , and Yann LeCun . 2013. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 ( 2013 ). Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203 (2013)."},{"volume-title":"Spectral temporal graph neural network for multivariate time-series forecasting. Advances in neural information processing systems 33","year":"2020","author":"Cao Defu","key":"e_1_3_2_1_3_1","unstructured":"Defu Cao , Yujing Wang , Juanyong Duan , Ce Zhang , Xia Zhu , Congrui Huang , Yunhai Tong , Bixiong Xu , Jing Bai , Jie Tong , 2020. Spectral temporal graph neural network for multivariate time-series forecasting. Advances in neural information processing systems 33 ( 2020 ), 17766\u201317778. Defu Cao, Yujing Wang, Juanyong Duan, Ce Zhang, Xia Zhu, Congrui Huang, Yunhai Tong, Bixiong Xu, Jing Bai, Jie Tong, 2020. Spectral temporal graph neural network for multivariate time-series forecasting. Advances in neural information processing systems 33 (2020), 17766\u201317778."},{"key":"e_1_3_2_1_4_1","doi-asserted-by":"publisher","DOI":"10.1111\/j.1540-6261.1997.tb03808.x"},{"volume-title":"Forthcoming","year":"2021","author":"Chen Y","key":"e_1_3_2_1_5_1","unstructured":"Andrew\u00a0 Y Chen and Tom Zimmermann . 2021. Open source cross-sectional asset pricing. Critical Finance Review , Forthcoming ( 2021 ). Andrew\u00a0Y Chen and Tom Zimmermann. 2021. Open source cross-sectional asset pricing. Critical Finance Review, Forthcoming (2021)."},{"volume-title":"Xgboost: extreme gradient boosting. R package version 0.4-2 1, 4","year":"2015","author":"Chen Tianqi","key":"e_1_3_2_1_6_1","unstructured":"Tianqi Chen , Tong He , Michael Benesty , Vadim Khotilovich , Yuan Tang , Hyunsu Cho , Kailong Chen , Rory Mitchell , Ignacio Cano , Tianyi Zhou , 2015. Xgboost: extreme gradient boosting. R package version 0.4-2 1, 4 ( 2015 ), 1\u20134. Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang, Hyunsu Cho, Kailong Chen, Rory Mitchell, Ignacio Cano, Tianyi Zhou, 2015. Xgboost: extreme gradient boosting. R package version 0.4-2 1, 4 (2015), 1\u20134."},{"key":"e_1_3_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2021.108218"},{"key":"e_1_3_2_1_8_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i5.16523"},{"key":"e_1_3_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1145\/3340531.3411903"},{"key":"e_1_3_2_1_10_1","doi-asserted-by":"publisher","DOI":"10.1145\/3309547"},{"volume-title":"Artificial neural networks (the multilayer perceptron)\u2014a review of applications in the atmospheric sciences. Atmospheric environment 32, 14-15","year":"1998","author":"Gardner W","key":"e_1_3_2_1_11_1","unstructured":"Matt\u00a0 W Gardner and SR Dorling . 1998. Artificial neural networks (the multilayer perceptron)\u2014a review of applications in the atmospheric sciences. Atmospheric environment 32, 14-15 ( 1998 ), 2627\u20132636. Matt\u00a0W Gardner and SR Dorling. 1998. Artificial neural networks (the multilayer perceptron)\u2014a review of applications in the atmospheric sciences. Atmospheric environment 32, 14-15 (1998), 2627\u20132636."},{"key":"e_1_3_2_1_12_1","doi-asserted-by":"publisher","DOI":"10.1093\/rfs\/hhaa009"},{"key":"e_1_3_2_1_13_1","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i1.16088"},{"key":"e_1_3_2_1_14_1","doi-asserted-by":"publisher","DOI":"10.1093\/rfs\/hhx127"},{"key":"e_1_3_2_1_15_1","doi-asserted-by":"publisher","DOI":"10.1080\/00401706.1970.10488635"},{"volume-title":"Replicating anomalies. The Review of financial studies 33, 5","year":"2020","author":"Hou Kewei","key":"e_1_3_2_1_16_1","unstructured":"Kewei Hou , Chen Xue , and Lu Zhang . 2020. Replicating anomalies. The Review of financial studies 33, 5 ( 2020 ), 2019\u20132133. Kewei Hou, Chen Xue, and Lu Zhang. 2020. Replicating anomalies. The Review of financial studies 33, 5 (2020), 2019\u20132133."},{"volume-title":"Hierarchical graph convolutional networks for semi-supervised node classification. arXiv preprint arXiv:1902.06667","year":"2019","author":"Hu Fenyu","key":"e_1_3_2_1_17_1","unstructured":"Fenyu Hu , Yanqiao Zhu , Shu Wu , Liang Wang , and Tieniu Tan . 2019. Hierarchical graph convolutional networks for semi-supervised node classification. arXiv preprint arXiv:1902.06667 ( 2019 ). Fenyu Hu, Yanqiao Zhu, Shu Wu, Liang Wang, and Tieniu Tan. 2019. Hierarchical graph convolutional networks for semi-supervised node classification. arXiv preprint arXiv:1902.06667 (2019)."},{"key":"e_1_3_2_1_18_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2022.105452"},{"key":"e_1_3_2_1_20_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.114411"},{"volume-title":"Selecting mutual funds from the stocks they hold: A machine learning approach. Available at SSRN 3737667","year":"2020","author":"Li Bin","key":"e_1_3_2_1_21_1","unstructured":"Bin Li and Alberto\u00a0 G Rossi . 2020. Selecting mutual funds from the stocks they hold: A machine learning approach. Available at SSRN 3737667 ( 2020 ). Bin Li and Alberto\u00a0G Rossi. 2020. Selecting mutual funds from the stocks they hold: A machine learning approach. Available at SSRN 3737667 (2020)."},{"volume-title":"Proceedings of the twenty-ninth international conference on international joint conferences on artificial intelligence. 4541\u20134547","year":"2021","author":"Li Wei","key":"e_1_3_2_1_22_1","unstructured":"Wei Li , Ruihan Bao , Keiko Harimoto , Deli Chen , Jingjing Xu , and Qi Su . 2021 . Modeling the stock relation with graph network for overnight stock movement prediction . In Proceedings of the twenty-ninth international conference on international joint conferences on artificial intelligence. 4541\u20134547 . Wei Li, Ruihan Bao, Keiko Harimoto, Deli Chen, Jingjing Xu, and Qi Su. 2021. Modeling the stock relation with graph network for overnight stock movement prediction. In Proceedings of the twenty-ninth international conference on international joint conferences on artificial intelligence. 4541\u20134547."},{"key":"e_1_3_2_1_23_1","doi-asserted-by":"publisher","DOI":"10.1093\/rfs\/hhs103"},{"volume-title":"Introduction to linear regression analysis","author":"Montgomery C","key":"e_1_3_2_1_24_1","unstructured":"Douglas\u00a0 C Montgomery , Elizabeth\u00a0 A Peck , and G\u00a0Geoffrey Vining . 2021. Introduction to linear regression analysis . John Wiley & Sons . Douglas\u00a0C Montgomery, Elizabeth\u00a0A Peck, and G\u00a0Geoffrey Vining. 2021. Introduction to linear regression analysis. John Wiley & Sons."},{"key":"e_1_3_2_1_25_1","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623732"},{"key":"e_1_3_2_1_26_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.oregeorev.2015.01.001"},{"key":"e_1_3_2_1_27_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jfineco.2018.02.003"},{"key":"e_1_3_2_1_28_1","doi-asserted-by":"publisher","DOI":"10.1093\/comnet\/cnab014"},{"key":"e_1_3_2_1_29_1","doi-asserted-by":"publisher","DOI":"10.1145\/3459637.3482413"},{"key":"e_1_3_2_1_30_1","doi-asserted-by":"publisher","DOI":"10.1145\/3533271.3561748"},{"volume-title":"Graph attention networks. arXiv preprint arXiv:1710.10903","year":"2017","author":"Veli\u010dkovi\u0107 Petar","key":"e_1_3_2_1_31_1","unstructured":"Petar Veli\u010dkovi\u0107 , Guillem Cucurull , Arantxa Casanova , Adriana Romero , Pietro Lio , and Yoshua Bengio . 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 ( 2017 ). Petar Veli\u010dkovi\u0107, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)."},{"key":"e_1_3_2_1_32_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2019.00070"},{"key":"e_1_3_2_1_33_1","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611976700.79"},{"volume-title":"Claudio Bellei, Tom Robinson, and Charles\u00a0E Leiserson.","year":"2019","author":"Weber Mark","key":"e_1_3_2_1_34_1","unstructured":"Mark Weber , Giacomo Domeniconi , Jie Chen , Daniel Karl\u00a0I Weidele , Claudio Bellei, Tom Robinson, and Charles\u00a0E Leiserson. 2019 . Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019). Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl\u00a0I Weidele, Claudio Bellei, Tom Robinson, and Charles\u00a0E Leiserson. 2019. Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)."},{"key":"e_1_3_2_1_35_1","doi-asserted-by":"publisher","DOI":"10.1093\/rfs\/hhm014"},{"volume-title":"International conference on machine learning. PMLR, 6861\u20136871","year":"2019","author":"Wu Felix","key":"e_1_3_2_1_36_1","unstructured":"Felix Wu , Amauri Souza , Tianyi Zhang , Christopher Fifty , Tao Yu , and Kilian Weinberger . 2019 . Simplifying graph convolutional networks . In International conference on machine learning. PMLR, 6861\u20136871 . Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. 2019. Simplifying graph convolutional networks. In International conference on machine learning. PMLR, 6861\u20136871."},{"key":"e_1_3_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.2978386"},{"key":"e_1_3_2_1_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR48806.2021.9412695"},{"volume-title":"Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875","year":"2017","author":"Yu Bing","key":"e_1_3_2_1_39_1","unstructured":"Bing Yu , Haoteng Yin , and Zhanxing Zhu . 2017. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 ( 2017 ). Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)."},{"volume-title":"Uncovering mutual fund private information with machine learning. Available at SSRN 3713966","year":"2020","author":"Zhang Alan","key":"e_1_3_2_1_40_1","unstructured":"Alan Zhang . 2020. Uncovering mutual fund private information with machine learning. Available at SSRN 3713966 ( 2020 ). Alan Zhang. 2020. Uncovering mutual fund private information with machine learning. Available at SSRN 3713966 (2020)."},{"key":"e_1_3_2_1_41_1","doi-asserted-by":"publisher","DOI":"10.1145\/3533271.3561751"}],"event":{"name":"ICAIF '23: 4th ACM International Conference on AI in Finance","acronym":"ICAIF '23","location":"Brooklyn NY USA"},"container-title":["4th ACM International Conference on AI in Finance"],"original-title":[],"link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.1145\/3604237.3626910","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,27]],"date-time":"2023-11-27T11:25:03Z","timestamp":1701084303000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.1145\/3604237.3626910"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11,25]]},"references-count":40,"alternative-id":["10.1145\/3604237.3626910","10.1145\/3604237"],"URL":"http:\/\/dx.doi.org\/10.1145\/3604237.3626910","relation":{},"subject":[],"published":{"date-parts":[[2023,11,25]]},"assertion":[{"value":"2023-11-25","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}