{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,10,9]],"date-time":"2023-10-09T06:55:59Z","timestamp":1696834559987},"reference-count":28,"publisher":"Institute of Mathematical Statistics","issue":"4","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Braz. J. Probab. Stat."],"published-print":{"date-parts":[[2020,10,1]]},"DOI":"10.1214\/19-bjps460","type":"journal-article","created":{"date-parts":[[2020,9,25]],"date-time":"2020-09-25T08:00:32Z","timestamp":1601020832000},"source":"Crossref","is-referenced-by-count":2,"title":["Some new Stein operators for product distributions"],"prefix":"10.1214","volume":"34","author":[{"given":"Robert E.","family":"Gaunt","sequence":"first","affiliation":[]},{"given":"Guillaume","family":"Mijoule","sequence":"additional","affiliation":[]},{"given":"Yvik","family":"Swan","sequence":"additional","affiliation":[]}],"member":"108","reference":[{"key":"3","doi-asserted-by":"crossref","unstructured":"Barbour, A. D. (1990). Stein\u2019s method for diffusion approximations. *Probability Theory and Related Fields<\/i> ***84<\/b>, 297\u2013322.","DOI":"10.1007\/BF01197887"},{"key":"21","doi-asserted-by":"crossref","unstructured":"Pek\u00f6z, E., R\u00f6llin, A. and Ross, N. (2013). Degree asymptotics with rates for preferential attachment random graphs. ***The Annals of Applied Probability<\/i> ***23<\/b>, 1188\u20131218.","DOI":"10.1214\/12-AAP868"},{"key":"7","doi-asserted-by":"crossref","unstructured":"D\u00f6bler, C. (2015). Stein\u2019s method of exchangeable pairs for the Beta distribution and generalizations. ***Electronic Journal of Probability<\/i> ***20<\/b>, 1\u201334.","DOI":"10.1214\/EJP.v20-3933"},{"key":"15","doi-asserted-by":"publisher","unstructured":"Kusuoka, S. and Tudor, C. A. (2012). Stein\u2019s method for invariant measures of diffusions via Malliavin calculus. ***Stochastic Processes and Their Applications<\/i> ***122<\/b>, 1627\u20131651.","DOI":"10.1016\/j.spa.2012.02.005"},{"key":"16","doi-asserted-by":"publisher","unstructured":"Ley, C., Reinert, G. and Swan, Y. (2017). Stein\u2019s method for comparison of univariate distributions. ***Probability Surveys<\/i> ***14<\/b>, 1\u201352.","DOI":"10.1214\/16-PS278"},{"key":"1","doi-asserted-by":"publisher","unstructured":"Arras, B., Azmoodeh, E., Poly, G. and Swan, Y. (2019a). A bound on the 2-Wasserstein distance between linear combinations of independent random variables. ***Stochastic Processes and Their Applications<\/i> ***129<\/b>, 2341\u20132375.","DOI":"10.1016\/j.spa.2018.07.009"},{"key":"4","unstructured":"Chatterjee, S., Fulman, J. and R\u00f6llin, A. (2011). Exponential approximation by Stein\u2019s method and spectral graph theory. ***ALEA Latin American Journal of Probability and Mathematical Statistics<\/i> ***8<\/b>, 197\u2013223."},{"key":"5","doi-asserted-by":"publisher","unstructured":"Chen, L. H. Y. (1975). Poisson approximation for dependent trials. ***Annals of Probability<\/i> ***3<\/b>, 534\u2013545.","DOI":"10.1214\/aop\/1176996359"},{"key":"6","doi-asserted-by":"crossref","unstructured":"Cui, G., Yu, X., Iommelli, S. and Kong, L. (2016). Exact distribution for the product of two correlated Gaussian random variables. ***IEEE Signal Processing Letters<\/i> ***23<\/b>, 1662\u20131666.","DOI":"10.1109\/LSP.2016.2614539"},{"key":"8","doi-asserted-by":"publisher","unstructured":"Gaunt, R. E. (2014). Variance-Gamma approximation via Stein\u2019s method. ***Electronic Journal of Probability<\/i> ***19<\/b>, 1\u201333.","DOI":"10.1214\/EJP.v19-3020"},{"key":"9","doi-asserted-by":"publisher","unstructured":"Gaunt, R. E. (2017a). On Stein\u2019s method for products of normal random variables and zero bias couplings. ***Bernoulli<\/i> ***23<\/b>, 3311\u20133345.","DOI":"10.3150\/16-BEJ848"},{"key":"10","doi-asserted-by":"crossref","unstructured":"Gaunt, R. E. (2017b). A Stein characterisation of the generalized hyperbolic distribution. ***ESAIM Probabilit\u00e9s Et Statistique<\/i> ***21<\/b>, 303\u2013316.","DOI":"10.1051\/ps\/2017007"},{"key":"11","doi-asserted-by":"publisher","unstructured":"Gaunt, R. E. (2018). Products of normal, beta and gamma random variables: Stein operators and distributional theory. ***Brazilian Journal of Probability and Statistics<\/i> ***32<\/b>, 437\u2013466.","DOI":"10.1214\/16-BJPS349"},{"key":"12","doi-asserted-by":"publisher","unstructured":"Gaunt, R. E. (2019). Stein operators for variables from the third and fourth Wiener chaoses. ***Statistics & Probability Letters<\/i> ***145<\/b>, 118\u2013126.","DOI":"10.1016\/j.spl.2018.09.001"},{"key":"13","doi-asserted-by":"publisher","unstructured":"Gaunt, R. E., Mijoule, G. and Swan, Y. (2019). An algebra of Stein operators. ***Journal of Mathematical Analysis and Applications<\/i> ***469<\/b>, 260\u2013279.","DOI":"10.1016\/j.jmaa.2018.09.015"},{"key":"14","doi-asserted-by":"publisher","unstructured":"G\u00f6tze, F. (1991). On the rate of convergence in the multivariate CLT. ***Annals of Probability<\/i> ***19<\/b>, 724\u2013739.","DOI":"10.1214\/aop\/1176990448"},{"key":"17","doi-asserted-by":"publisher","unstructured":"Ley, C. and Swan, Y. (2016). Parametric Stein operators and variance bounds. ***Brazilian Journal of Probability and Statistics<\/i> ***30<\/b>, 171\u2013195.","DOI":"10.1214\/14-BJPS271"},{"key":"19","unstructured":"Mijoule, G., Reinert, G. and Swan, Y. (2018). Stein operators, kernels and discrepancies for multivariate continuous distributions. Available at arXiv:1806.03478<\/a>."},{"key":"22","unstructured":"Pike, J. and Ren, H. (2014). Stein\u2019as method and the Laplace distribution. ***ALEA Latin American Journal of Probability and Mathematical Statistics<\/i> ***11<\/b>, 571\u2013587."},{"key":"23","doi-asserted-by":"publisher","unstructured":"Ross, N. (2011). Fundamentals of Stein\u2019s method. ***Probability Surveys<\/i> ***8<\/b>, 210\u2013293.","DOI":"10.1214\/11-PS182"},{"key":"24","doi-asserted-by":"publisher","unstructured":"Schoutens, W. (2001). Orthogonal polynomials in Stein\u2019s method. ***Journal of Mathematical Analysis and Applications<\/i> ***253<\/b>, 515\u2013531.","DOI":"10.1006\/jmaa.2000.7159"},{"key":"27","doi-asserted-by":"publisher","unstructured":"Upadhye, N. S., Cekanavicius, V. and Vellaisamy, P. (2017). On Stein operators for discrete approximations. ***Bernoulli<\/i> ***23<\/b>, 2828\u20132859.","DOI":"10.3150\/16-BEJ829"},{"key":"2","doi-asserted-by":"publisher","unstructured":"Arras, B., Azmoodeh, E., Poly, G. and Swan, Y. (2019b). Stein characterizations for linear combinations of gamma random variables. ***Brazilian Journal of Probability and Statistics<\/i>. To appear.","DOI":"10.1214\/18-BJPS420"},{"key":"18","unstructured":"Luk, H. (1994). Stein\u2019s Method for the Gamma Distribution and Related Statistical Applications. PhD thesis, University of Southern California."},{"key":"20","doi-asserted-by":"publisher","unstructured":"Nourdin, I., Peccati, G. and Swan, Y. (2014). Integration by Parts and Representation of Information Functionals. In **Information Theory (ISIT), 2014 IEEE International Symposium on<\/i>. IEEE.","DOI":"10.1016\/j.jfa.2013.09.017"},{"key":"25","unstructured":"Stein, C. (1972). A bound for the error in the normal approximation to the the distribution of a sum of dependent random variables. In **Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 2<\/i>, 583\u2013602. Berkeley: Univ. California Press."},{"key":"26","doi-asserted-by":"crossref","unstructured":"Stein, C. (1986). **Approximate Computation of Expectations<\/i>. Hayward, CA: IMS.","DOI":"10.1214\/lnms\/1215466568"},{"key":"28","unstructured":"Ware, R. and Lad, F. (2013). Approximating the distribution for sums of products of normal variables. Working paper. Department of Mathematics and Statistics, University of Canterbury."}],"container-title":["Brazilian Journal of Probability and Statistics"],"original-title":[],"link":[{"URL":"https:\/\/projecteuclid.org\/download\/pdfview_1\/euclid.bjps\/1601020819","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,8]],"date-time":"2023-10-08T08:51:36Z","timestamp":1696755096000},"score":1,"resource":{"primary":{"URL":"https:\/\/projecteuclid.org\/journals\/brazilian-journal-of-probability-and-statistics\/volume-34\/issue-4\/Some-new-Stein-operators-for-product-distributions\/10.1214\/19-BJPS460.full"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,1]]},"references-count":28,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2020,10,1]]}},"URL":"http:\/\/dx.doi.org\/10.1214\/19-bjps460","relation":{},"ISSN":["0103-0752"],"issn-type":[{"value":"0103-0752","type":"print"}],"subject":["Statistics and Probability"],"published":{"date-parts":[[2020,10,1]]}}}*