{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,17]],"date-time":"2024-06-17T17:54:46Z","timestamp":1718646886107},"reference-count":70,"publisher":"Association for Computing Machinery (ACM)","issue":"7","content-domain":{"domain":["dl.acm.org"],"crossmark-restriction":true},"short-container-title":["Proc. VLDB Endow."],"published-print":{"date-parts":[[2023,3]]},"abstract":"Graph embedding maps graph nodes to low-dimensional vectors, and is widely adopted in machine learning tasks. The increasing availability of billion-edge graphs underscores the importance of learning efficient and effective embeddings on large graphs, such as link prediction on Twitter with over one billion edges. Most existing graph embedding methods fall short of reaching high data scalability. In this paper, we present a general-purpose, distributed, information-centric random walk-based graph embedding framework, DistGER, which can scale to embed billion-edge graphs. DistGER incrementally computes information-centric random walks. It further leverages a multi-proximity-aware, streaming, parallel graph partitioning strategy, simultaneously achieving high local partition quality and excellent workload balancing across machines. DistGER also improves the distributed Skip-Gram learning model to generate node embeddings by optimizing the access locality, CPU throughput, and synchronization efficiency. Experiments on real-world graphs demonstrate that compared to state-of-the-art distributed graph embedding frameworks, including KnightKing, DistDGL, and Pytorch-BigGraph, DistGER exhibits 2.33\u00d7--129\u00d7 acceleration, 45% reduction in cross-machines communication, and >10% effectiveness improvement in downstream tasks.<\/jats:p>","DOI":"10.14778\/3587136.3587140","type":"journal-article","created":{"date-parts":[[2023,5,8]],"date-time":"2023-05-08T23:11:35Z","timestamp":1683587495000},"page":"1643-1656","update-policy":"http:\/\/dx.doi.org\/10.1145\/crossmark-policy","source":"Crossref","is-referenced-by-count":3,"title":["Distributed Graph Embedding with Information-Oriented Random Walks"],"prefix":"10.14778","volume":"16","author":[{"given":"Peng","family":"Fang","sequence":"first","affiliation":[{"name":"Huazhong University of Science and Technology, China"}]},{"given":"Arijit","family":"Khan","sequence":"additional","affiliation":[{"name":"Aalborg University, Denmark"}]},{"given":"Siqiang","family":"Luo","sequence":"additional","affiliation":[{"name":"Nanyang Technological University, Singapore"}]},{"given":"Fang","family":"Wang","sequence":"additional","affiliation":[{"name":"Huazhong University of Science and Technology, China"}]},{"given":"Dan","family":"Feng","sequence":"additional","affiliation":[{"name":"Huazhong University of Science and Technology, China"}]},{"given":"Zhenli","family":"Li","sequence":"additional","affiliation":[{"name":"Huazhong University of Science and Technology, China"}]},{"given":"Wei","family":"Yin","sequence":"additional","affiliation":[{"name":"Huazhong University of Science and Technology, China"}]},{"given":"Yuchao","family":"Cao","sequence":"additional","affiliation":[{"name":"Huazhong University of Science and Technology, China"}]}],"member":"320","published-online":{"date-parts":[[2023,5,8]]},"reference":[{"key":"e_1_2_1_1_1","doi-asserted-by":"publisher","DOI":"10.14778\/3236187.3236208"},{"key":"e_1_2_1_2_1","doi-asserted-by":"crossref","unstructured":"L. Adamic O. Buyukkokten and E. Adar. 2003. A Social Network Caught in the Web. First Monday 8 6 (2003). L. Adamic O. Buyukkokten and E. Adar. 2003. A Social Network Caught in the Web. First Monday 8 6 (2003).","DOI":"10.5210\/fm.v8i6.1057"},{"key":"e_1_2_1_3_1","doi-asserted-by":"crossref","unstructured":"A.-L. Barabasi and R. Albert. 1999. Emergence of Scaling in Random Networks. Science 286 5439 (1999) 509--512. A.-L. Barabasi and R. Albert. 1999. Emergence of Scaling in Random Networks. Science 286 5439 (1999) 509--512.","DOI":"10.1126\/science.286.5439.509"},{"key":"e_1_2_1_4_1","doi-asserted-by":"crossref","unstructured":"M. Belkin and P. Niyogi. 2001. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In NeurIPS. M. Belkin and P. Niyogi. 2001. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In NeurIPS.","DOI":"10.7551\/mitpress\/1120.003.0080"},{"key":"e_1_2_1_5_1","doi-asserted-by":"crossref","unstructured":"S. Bhagat G. Cormode and S. Muthukrishnan. 2011. Node Classification in Social Networks. In Social Network Data Analytics Charu C. Aggarwal (Ed.). Springer 115--148. S. Bhagat G. Cormode and S. Muthukrishnan. 2011. Node Classification in Social Networks. In Social Network Data Analytics Charu C. Aggarwal (Ed.). Springer 115--148.","DOI":"10.1007\/978-1-4419-8462-3_5"},{"key":"e_1_2_1_6_1","doi-asserted-by":"publisher","DOI":"10.1145\/567806.567807"},{"key":"e_1_2_1_7_1","doi-asserted-by":"publisher","DOI":"10.1145\/1480506.1480511"},{"key":"e_1_2_1_8_1","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1007\/978-3-319-49487-6_4","article-title":"Recent Advances in Graph Partitioning. In Algorithm Engineering - Selected Results and Surveys","volume":"9220","author":"Bulu\u00e7 A.","year":"2016","unstructured":"A. Bulu\u00e7 , H. Meyerhenke , I. Safro , P. Sanders , and C. Schulz . 2016 . Recent Advances in Graph Partitioning. In Algorithm Engineering - Selected Results and Surveys . Lecture Notes in Computer Science , Vol. 9220. 117 -- 158 . A. Bulu\u00e7, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. 2016. Recent Advances in Graph Partitioning. In Algorithm Engineering - Selected Results and Surveys. Lecture Notes in Computer Science, Vol. 9220. 117--158.","journal-title":"Lecture Notes in Computer Science"},{"key":"e_1_2_1_9_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2018.2807452"},{"key":"e_1_2_1_10_1","volume-title":"IEEE International Conference on Big Data.","author":"Canny J.","unstructured":"J. Canny , H. Zhao , B. Jaros , C. Ye , and J. Mao . 2015. Machine Learning at the Limit . In IEEE International Conference on Big Data. J. Canny, H. Zhao, B. Jaros, C. Ye, and J. Mao. 2015. Machine Learning at the Limit. In IEEE International Conference on Big Data."},{"key":"e_1_2_1_11_1","doi-asserted-by":"crossref","unstructured":"D. Chakrabarti Y. Zhan and C. Faloutsos. 2004. R-MAT: A Recursive Model for Graph Mining. In SDM. D. Chakrabarti Y. Zhan and C. Faloutsos. 2004. R-MAT: A Recursive Model for Graph Mining. In SDM.","DOI":"10.1137\/1.9781611972740.43"},{"key":"e_1_2_1_12_1","unstructured":"E. D. Demaine A. L\u00f3pez-Ortiz and J. I. Munro. 2000. Adaptive Set Intersections Unions and Differences. In SODA. E. D. Demaine A. L\u00f3pez-Ortiz and J. I. Munro. 2000. Adaptive Set Intersections Unions and Differences. In SODA."},{"key":"e_1_2_1_13_1","doi-asserted-by":"crossref","unstructured":"S. C. Dong X. P. Miao P. K. Liu X. Wang B. Cui and J. X. Li. 2022. HET-KG: Communication-Efficient Knowledge Graph Embedding Training via Hotness-Aware Cache. In ICDE. IEEE 1754--1766. S. C. Dong X. P. Miao P. K. Liu X. Wang B. Cui and J. X. Li. 2022. HET-KG: Communication-Efficient Knowledge Graph Embedding Training via Hotness-Aware Cache. In ICDE. IEEE 1754--1766.","DOI":"10.1109\/ICDE53745.2022.00177"},{"key":"e_1_2_1_14_1","unstructured":"P. Fang A. Khan S. Luo F. Wang D. Feng Z. Li W. Yin and Y. Cao. 2022. Our code and datasets. https:\/\/github.com\/RocmFang\/DistGER. P. Fang A. Khan S. Luo F. Wang D. Feng Z. Li W. Yin and Y. Cao. 2022. Our code and datasets. https:\/\/github.com\/RocmFang\/DistGER."},{"key":"e_1_2_1_15_1","doi-asserted-by":"crossref","unstructured":"Peng Fang Arijit Khan Siqiang Luo Fang Wang Dan Feng Zhenli Li Wei Yin and Yuchao Cao. 2023. Distributed Graph Embedding with Information-Oriented Random Walks. arXiv:2303.15702 [cs.DC] Peng Fang Arijit Khan Siqiang Luo Fang Wang Dan Feng Zhenli Li Wei Yin and Yuchao Cao. 2023. Distributed Graph Embedding with Information-Oriented Random Walks. arXiv:2303.15702 [cs.DC]","DOI":"10.14778\/3587136.3587140"},{"key":"e_1_2_1_16_1","doi-asserted-by":"crossref","unstructured":"P. Fang F. Wang Z. Shi H. Jiang D. Feng X. Xu and W. Yin. 2022. How to Realize Efficient and Scalable Graph Embeddings via an Entropy-driven Mechanism. IEEE Transactions on Big Data (2022). P. Fang F. Wang Z. Shi H. Jiang D. Feng X. Xu and W. Yin. 2022. How to Realize Efficient and Scalable Graph Embeddings via an Entropy-driven Mechanism. IEEE Transactions on Big Data (2022).","DOI":"10.1109\/ICDE51399.2021.00198"},{"key":"e_1_2_1_17_1","doi-asserted-by":"crossref","unstructured":"P. Fang F. Wang Z. Shi H. Jiang D. Feng and L. Yang. 2021. HuGE: An Entropy-driven Approach to Efficient and Scalable Graph Embeddings. In ICDE. P. Fang F. Wang Z. Shi H. Jiang D. Feng and L. Yang. 2021. HuGE: An Entropy-driven Approach to Efficient and Scalable Graph Embeddings. In ICDE.","DOI":"10.1109\/ICDE51399.2021.00198"},{"key":"e_1_2_1_18_1","doi-asserted-by":"crossref","unstructured":"A. Grover and J. Leskovec. 2016. Node2vec: Scalable Feature Learning for Networks. In KDD. A. Grover and J. Leskovec. 2016. Node2vec: Scalable Feature Learning for Networks. In KDD.","DOI":"10.1145\/2939672.2939754"},{"key":"e_1_2_1_19_1","volume-title":"WTF: The Who to Follow Service at Twitter. In WWW.","author":"Gupta P.","year":"2013","unstructured":"P. Gupta , A. Goel , J. Lin , A. Sharma , D. Wang , and R. Zadeh . 2013 . WTF: The Who to Follow Service at Twitter. In WWW. P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. 2013. WTF: The Who to Follow Service at Twitter. In WWW."},{"key":"e_1_2_1_20_1","unstructured":"W. L. Hamilton Z. Ying and J. Leskovec. 2017. Inductive Representation Learning on Large Graphs. In NeurIPS. W. L. Hamilton Z. Ying and J. Leskovec. 2017. Inductive Representation Learning on Large Graphs. In NeurIPS."},{"key":"e_1_2_1_21_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2019.2904058"},{"key":"e_1_2_1_22_1","doi-asserted-by":"crossref","unstructured":"G. Karypis and V. Kumar. 1998. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on scientific Computing 20 1 (1998) 359--392. G. Karypis and V. Kumar. 1998. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal on scientific Computing 20 1 (1998) 359--392.","DOI":"10.1137\/S1064827595287997"},{"key":"e_1_2_1_23_1","doi-asserted-by":"crossref","unstructured":"H. Kwak C. Lee H. Park and S. Moon. 2010. What is Twitter a Social Network or a News Media?. In WWW. H. Kwak C. Lee H. Park and S. Moon. 2010. What is Twitter a Social Network or a News Media?. In WWW.","DOI":"10.1145\/1772690.1772751"},{"key":"e_1_2_1_24_1","unstructured":"H. Kwak C. Lee H. Park and S. Moon. 2012. Defining and Evaluating Network Communities based on Ground-truth. In ICDM. H. Kwak C. Lee H. Park and S. Moon. 2012. Defining and Evaluating Network Communities based on Ground-truth. In ICDM."},{"key":"e_1_2_1_25_1","volume-title":"New York) (ISCA '22)","author":"Lee Y.","unstructured":"Y. Lee , J. Chung , and M. Rhu . 2022. SmartSAGE: Training Large-Scale Graph Neural Networks Using in-Storage Processing Architectures. In ISCA (New York , New York) (ISCA '22) . Association for Computing Machinery, New York, NY, USA, 932--945. Y. Lee, J. Chung, and M. Rhu. 2022. SmartSAGE: Training Large-Scale Graph Neural Networks Using in-Storage Processing Architectures. In ISCA (New York, New York) (ISCA '22). Association for Computing Machinery, New York, NY, USA, 932--945."},{"key":"e_1_2_1_26_1","unstructured":"A. Lerer L. Wu J. Shen T. Lacroix L. Wehrstedt A. Bose and A. Peysakhovich. 2019. Pytorch-BigGraph: A Large Scale Graph Embedding System. In MLSys. A. Lerer L. Wu J. Shen T. Lacroix L. Wehrstedt A. Bose and A. Peysakhovich. 2019. Pytorch-BigGraph: A Large Scale Graph Embedding System. In MLSys."},{"key":"e_1_2_1_27_1","doi-asserted-by":"crossref","unstructured":"Y. Li Z. Wu S. Lin H. Xie M. Lv Y. Xu and J. C. S. Lui. 2019. Walking with Perception: Efficient Random Walk Sampling via Common Neighbor Awareness. In ICDE. Y. Li Z. Wu S. Lin H. Xie M. Lv Y. Xu and J. C. S. Lui. 2019. Walking with Perception: Efficient Random Walk Sampling via Common Neighbor Awareness. In ICDE.","DOI":"10.1109\/ICDE.2019.00090"},{"key":"e_1_2_1_28_1","doi-asserted-by":"crossref","unstructured":"R. N. Lichtenwalter J. T. Lussier and N. V. Chawla. 2010. New Perspectives and Methods in Link Prediction. In KDD. 243--252. R. N. Lichtenwalter J. T. Lussier and N. V. Chawla. 2010. New Perspectives and Methods in Link Prediction. In KDD. 243--252.","DOI":"10.1145\/1835804.1835837"},{"key":"e_1_2_1_29_1","doi-asserted-by":"crossref","unstructured":"C. Liu H. K. Liu H. Jin X. F. Liao Y. Zhang Z. H. Duan J. H. Xu and H. Z. Li. 2022. ReGNN: a ReRAM-based Heterogeneous Architecture for General Graph Neural Networks. In DAC. 469--474. C. Liu H. K. Liu H. Jin X. F. Liao Y. Zhang Z. H. Duan J. H. Xu and H. Z. Li. 2022. ReGNN: a ReRAM-based Heterogeneous Architecture for General Graph Neural Networks. In DAC. 469--474.","DOI":"10.1145\/3489517.3530479"},{"key":"e_1_2_1_30_1","unstructured":"S. Q. Luo Z. C. Zhu X. K. Xiao Y. Yang C. B. Li and B. Kao. 2023. Multi-Task Processing in Vertex-Centric Graph Systems: Evaluations and Insights. (2023). S. Q. Luo Z. C. Zhu X. K. Xiao Y. Yang C. B. Li and B. Kao. 2023. Multi-Task Processing in Vertex-Centric Graph Systems: Evaluations and Insights. (2023)."},{"key":"e_1_2_1_31_1","unstructured":"T. Mikolov K. Chen G. Corrado and J. Dean. 2013. Efficient Estimation of Word Representations in Vector Space. In ICLR. T. Mikolov K. Chen G. Corrado and J. Dean. 2013. Efficient Estimation of Word Representations in Vector Space. In ICLR."},{"key":"e_1_2_1_32_1","unstructured":"T. Mikolov I. Sutskever K. Chen G. S. Corrado and J. Dean. 2013. Distributed Representations of Words and Phrases and their Compositionality. In NeurIPS. T. Mikolov I. Sutskever K. Chen G. S. Corrado and J. Dean. 2013. Distributed Representations of Words and Phrases and their Compositionality. In NeurIPS."},{"key":"e_1_2_1_33_1","volume-title":"Marius: Learning Massive Graph Embeddings on a Single Machine. In OSDI. 533--549.","author":"Mohoney J.","year":"2021","unstructured":"J. Mohoney , R. Waleffe , H. Xu , T. Rekatsinas , and S. Venkataraman . 2021 . Marius: Learning Massive Graph Embeddings on a Single Machine. In OSDI. 533--549. J. Mohoney, R. Waleffe, H. Xu, T. Rekatsinas, and S. Venkataraman. 2021. Marius: Learning Massive Graph Embeddings on a Single Machine. In OSDI. 533--549."},{"key":"e_1_2_1_34_1","doi-asserted-by":"crossref","unstructured":"F. Nie W. Zhu and X. Li. 2017. Unsupervised Large Graph Embedding. In AAAI. F. Nie W. Zhu and X. Li. 2017. Unsupervised Large Graph Embedding. In AAAI.","DOI":"10.1609\/aaai.v31i1.10814"},{"key":"e_1_2_1_35_1","unstructured":"F. Niu B. Recht C. Re and S. J. Wright. 2011. HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NIPS. 693--701. F. Niu B. Recht C. Re and S. J. Wright. 2011. HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NIPS. 693--701."},{"key":"e_1_2_1_36_1","doi-asserted-by":"crossref","unstructured":"A. Pacaci and M. T. \u00d6zsu. 2019. Experimental Analysis of Streaming Algorithms for Graph Partitioning. In SIGMOD. A. Pacaci and M. T. \u00d6zsu. 2019. Experimental Analysis of Streaming Algorithms for Graph Partitioning. In SIGMOD.","DOI":"10.1145\/3299869.3300076"},{"key":"e_1_2_1_37_1","doi-asserted-by":"publisher","DOI":"10.14778\/3551793.3551819"},{"key":"e_1_2_1_38_1","doi-asserted-by":"crossref","unstructured":"R. A. Pearce M. B. Gokhale and N. M. Amato. 2010. Multithreaded Asynchronous Graph Traversal for In-Memory and Semi-External Memory. In SC. R. A. Pearce M. B. Gokhale and N. M. Amato. 2010. Multithreaded Asynchronous Graph Traversal for In-Memory and Semi-External Memory. In SC.","DOI":"10.1109\/SC.2010.34"},{"key":"e_1_2_1_39_1","doi-asserted-by":"crossref","unstructured":"B. Perozzi R. Al-Rfou and S. Skiena. 2014. DeepWalk: Online Learning of Social Representations. In KDD. B. Perozzi R. Al-Rfou and S. Skiena. 2014. DeepWalk: Online Learning of Social Representations. In KDD.","DOI":"10.1145\/2623330.2623732"},{"key":"e_1_2_1_40_1","doi-asserted-by":"crossref","unstructured":"J. Qiu Y. Dong H. Ma J. Li C. Wang K. Wang and J. Tang. 2019. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. In WWW. J. Qiu Y. Dong H. Ma J. Li C. Wang K. Wang and J. Tang. 2019. NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization. In WWW.","DOI":"10.1145\/3308558.3313446"},{"key":"e_1_2_1_41_1","volume-title":"Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. In WSDM.","author":"Qiu J.","year":"2018","unstructured":"J. Qiu , Y. Dong , H. Ma , J. Li , K. Wang , and J. Tang . 2018 . Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. In WSDM. J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang. 2018. Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. In WSDM."},{"key":"e_1_2_1_42_1","doi-asserted-by":"crossref","unstructured":"V. Rengasamy T. Y. Fu W. C. Lee and K. Madduri. 2017. Optimizing Word2Vec Performance on Multicore Systems. In IA3. V. Rengasamy T. Y. Fu W. C. Lee and K. Madduri. 2017. Optimizing Word2Vec Performance on Multicore Systems. In IA3.","DOI":"10.1145\/3149704.3149768"},{"key":"e_1_2_1_43_1","doi-asserted-by":"publisher","DOI":"10.1214\/aoms\/1177729586"},{"key":"e_1_2_1_44_1","doi-asserted-by":"publisher","DOI":"10.1145\/3469379.3469387"},{"key":"e_1_2_1_45_1","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2018.2833443"},{"key":"e_1_2_1_46_1","doi-asserted-by":"crossref","unstructured":"I. Stanton and G. Kliot. 2012. Streaming Graph Partitioning for Large Distributed Graphs. In KDD. I. Stanton and G. Kliot. 2012. Streaming Graph Partitioning for Large Distributed Graphs. In KDD.","DOI":"10.1145\/2339530.2339722"},{"key":"e_1_2_1_47_1","doi-asserted-by":"publisher","DOI":"10.1145\/2736277.2741093"},{"key":"e_1_2_1_48_1","doi-asserted-by":"crossref","unstructured":"L. Tang and H. Liu. 2009. Scalable Learning of Collective Behavior based on Sparse Social Dimensions. In CIKM. L. Tang and H. Liu. 2009. Scalable Learning of Collective Behavior based on Sparse Social Dimensions. In CIKM.","DOI":"10.1145\/1645953.1646094"},{"key":"e_1_2_1_49_1","doi-asserted-by":"publisher","DOI":"10.1145\/3178876.3186120"},{"key":"e_1_2_1_50_1","doi-asserted-by":"publisher","DOI":"10.1145\/2556195.2556213"},{"key":"e_1_2_1_51_1","doi-asserted-by":"crossref","unstructured":"K. Tu P. Cui X. Wang P. S. Yu and W. Zhu. 2018. Deep Recursive Network Embedding with Regular Equivalence. In KDD. K. Tu P. Cui X. Wang P. S. Yu and W. Zhu. 2018. Deep Recursive Network Embedding with Regular Equivalence. In KDD.","DOI":"10.1145\/3219819.3220068"},{"key":"e_1_2_1_52_1","doi-asserted-by":"publisher","DOI":"10.1145\/79173.79181"},{"key":"e_1_2_1_53_1","unstructured":"P. Velickovic G. Cucurull A. Casanova A. Romero P. Li\u00f2 and Y. Bengio. 2018. Graph Attention Networks. In ICLR. P. Velickovic G. Cucurull A. Casanova A. Romero P. Li\u00f2 and Y. Bengio. 2018. Graph Attention Networks. In ICLR."},{"key":"e_1_2_1_54_1","doi-asserted-by":"crossref","unstructured":"D. Wang P. Cui and W. Zhu. 2016. Structural Deep Network Embedding. In KDD. D. Wang P. Cui and W. Zhu. 2016. Structural Deep Network Embedding. In KDD.","DOI":"10.1145\/2939672.2939753"},{"key":"e_1_2_1_55_1","doi-asserted-by":"crossref","unstructured":"H. Wang J. Wang J. Wang M. Zhao W. Zhang F. Zhang X. Xie and M. Guo. 2018. GraphGAN: Graph Representation Learning With Generative Adversarial Nets. In AAAI. H. Wang J. Wang J. Wang M. Zhao W. Zhang F. Zhang X. Xie and M. Guo. 2018. GraphGAN: Graph Representation Learning With Generative Adversarial Nets. In AAAI.","DOI":"10.1609\/aaai.v32i1.11872"},{"key":"e_1_2_1_56_1","doi-asserted-by":"crossref","unstructured":"J. Wang P. Huang H. Zhao Z. Zhang B. Zhao and D. L. Lee. 2018. Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba. In SIGKDD. J. Wang P. Huang H. Zhao Z. Zhang B. Zhao and D. L. Lee. 2018. Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba. In SIGKDD.","DOI":"10.1145\/3219819.3219869"},{"key":"e_1_2_1_57_1","unstructured":"M. Wang D. Zheng Z. Ye Q. Gan M. Li X. Song J. Zhou C. Ma L. Yu Y. Gai T. Xiao T. He G. Karypis J. Li and Z. Zhang. 2019. Deep Graph Library: A Graph-Centric Highly-Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315 (2019). M. Wang D. Zheng Z. Ye Q. Gan M. Li X. Song J. Zhou C. Ma L. Yu Y. Gai T. Xiao T. He G. Karypis J. Li and Z. Zhang. 2019. Deep Graph Library: A Graph-Centric Highly-Performant Package for Graph Neural Networks. arXiv preprint arXiv:1909.01315 (2019)."},{"key":"e_1_2_1_58_1","doi-asserted-by":"crossref","unstructured":"X. Wang P. Cui J. Wang J. Pei W. Zhu and S. Yang. 2017. Community Preserving Network Embedding. In AAAI. X. Wang P. Cui J. Wang J. Pei W. Zhu and S. Yang. 2017. Community Preserving Network Embedding. In AAAI.","DOI":"10.1609\/aaai.v31i1.10488"},{"key":"e_1_2_1_59_1","unstructured":"W. Wei Y. Wang P. Gao S. Sun and D. Yu. 2020. A Distributed Multi-GPU System for Large-Scale Node Embedding at Tencent. CoRR abs\/2005.13789 (2020). W. Wei Y. Wang P. Gao S. Sun and D. Yu. 2020. A Distributed Multi-GPU System for Large-Scale Node Embedding at Tencent. CoRR abs\/2005.13789 (2020)."},{"key":"e_1_2_1_60_1","doi-asserted-by":"crossref","unstructured":"X. Wei L. Xu B. Cao and P. S. Yu. 2017. Cross View Link Prediction by Learning Noise-resilient Representation Consensus. In WWW. X. Wei L. Xu B. Cao and P. S. Yu. 2017. Cross View Link Prediction by Learning Noise-resilient Representation Consensus. In WWW.","DOI":"10.1145\/3038912.3052575"},{"key":"e_1_2_1_61_1","volume-title":"Seastar: Vertex-centric Programming for Graph Neural Networks. In EuroSys. 359--375.","author":"Wu Y.","year":"2021","unstructured":"Y. Wu , K. Ma , Z. Cai , T. Jin , B. Li , C. Zheng , J. Cheng , and F. Yu . 2021 . Seastar: Vertex-centric Programming for Graph Neural Networks. In EuroSys. 359--375. Y. Wu, K. Ma, Z. Cai, T. Jin, B. Li, C. Zheng, J. Cheng, and F. Yu. 2021. Seastar: Vertex-centric Programming for Graph Neural Networks. In EuroSys. 359--375."},{"key":"e_1_2_1_62_1","doi-asserted-by":"crossref","unstructured":"K. Yang X. Ma S. Thirumuruganathan K. Chen and Y. Wu. 2021. Random Walks on Huge Graphs at Cache Efficiency. In SOSP. K. Yang X. Ma S. Thirumuruganathan K. Chen and Y. Wu. 2021. Random Walks on Huge Graphs at Cache Efficiency. In SOSP.","DOI":"10.1145\/3477132.3483575"},{"key":"e_1_2_1_63_1","doi-asserted-by":"crossref","unstructured":"K. Yang M. Zhang K. Chen X. Ma Y. Bai and Y. Jiang. 2019. KnightKing: A Fast Distributed Graph Random Walk Engine. In SOSP. K. Yang M. Zhang K. Chen X. Ma Y. Bai and Y. Jiang. 2019. KnightKing: A Fast Distributed Graph Random Walk Engine. In SOSP.","DOI":"10.1145\/3341301.3359634"},{"key":"e_1_2_1_64_1","doi-asserted-by":"publisher","DOI":"10.14778\/3377369.3377376"},{"key":"e_1_2_1_65_1","unstructured":"R. Zafarani and H. Liu. 2009. Social Computing Data Repository at ASU. In http:\/\/socialcomputing.asu.edu. R. Zafarani and H. Liu. 2009. Social Computing Data Repository at ASU. In http:\/\/socialcomputing.asu.edu ."},{"key":"e_1_2_1_66_1","doi-asserted-by":"crossref","unstructured":"J. Zhang Y. Dong Y. Wang J. Tang and M. Ding. 2019. ProNE: Fast and Scalable Network Representation Learning. In IJCAI. J. Zhang Y. Dong Y. Wang J. Tang and M. Ding. 2019. ProNE: Fast and Scalable Network Representation Learning. In IJCAI.","DOI":"10.24963\/ijcai.2019\/594"},{"key":"e_1_2_1_67_1","doi-asserted-by":"publisher","DOI":"10.14778\/3514061.3514069"},{"key":"e_1_2_1_68_1","doi-asserted-by":"crossref","unstructured":"D. Zheng C. Ma M. Wang J. Zhou Q. Su X. Song Q. Gan Z. Zhang and G. Karypis. 2020. DistDGL: Distributed Graph Neural Network Training for Billion-Scale Graphs. In IA3@SC. D. Zheng C. Ma M. Wang J. Zhou Q. Su X. Song Q. Gan Z. Zhang and G. Karypis. 2020. DistDGL: Distributed Graph Neural Network Training for Billion-Scale Graphs. In IA3@SC.","DOI":"10.1109\/IA351965.2020.00011"},{"key":"e_1_2_1_69_1","volume-title":"AliGraph: A Comprehensive Graph Neural Network Platform. Proc. VLDB Endow. (2019)","author":"Zhu R.","unstructured":"R. Zhu , K. Zhao , H. Yang , W. Lin , C. Zhou , B. Ai , Y. Li , and J. Zhou . 2019 . AliGraph: A Comprehensive Graph Neural Network Platform. Proc. VLDB Endow. (2019) , 2094--2105. R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou. 2019. AliGraph: A Comprehensive Graph Neural Network Platform. Proc. VLDB Endow. (2019), 2094--2105."},{"key":"e_1_2_1_70_1","doi-asserted-by":"crossref","unstructured":"Z. Zhu S. Xu J. Tang and M. Qu. 2019. GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding. In WWW. Z. Zhu S. Xu J. Tang and M. Qu. 2019. GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding. In WWW.","DOI":"10.1145\/3308558.3313508"}],"container-title":["Proceedings of the VLDB Endowment"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/dl.acm.org\/doi\/pdf\/10.14778\/3587136.3587140","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,12]],"date-time":"2023-12-12T11:05:42Z","timestamp":1702379142000},"score":1,"resource":{"primary":{"URL":"https:\/\/dl.acm.org\/doi\/10.14778\/3587136.3587140"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":70,"journal-issue":{"issue":"7","published-print":{"date-parts":[[2023,3]]}},"alternative-id":["10.14778\/3587136.3587140"],"URL":"http:\/\/dx.doi.org\/10.14778\/3587136.3587140","relation":{},"ISSN":["2150-8097"],"issn-type":[{"value":"2150-8097","type":"print"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"2023-05-08","order":2,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}