{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T15:12:33Z","timestamp":1726413153925},"reference-count":30,"publisher":"MDPI AG","issue":"10","license":[{"start":{"date-parts":[[2022,9,23]],"date-time":"2022-09-23T00:00:00Z","timestamp":1663891200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"United Arab Emirates University","award":["UPAR 31S315"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Axioms"],"abstract":"In the current work, by using the familiar q-calculus, first, we study certain generalized conic-type regions. We then introduce and study a subclass of the multivalent q-starlike functions that map the open unit disk into the generalized conic domain. Next, we study potentially effective outcomes such as sufficient restrictions and the Fekete\u2013Szeg\u00f6 type inequalities. We attain lower bounds for the ratio of a good few functions related to this lately established class and sequences of the partial sums. Furthermore, we acquire a number of attributes of the corresponding class of q-starlike functions having negative Taylor\u2013Maclaurin coefficients, including distortion theorems. Moreover, various important corollaries are carried out. The new explorations appear to be in line with a good few prior commissions and the current area of our recent investigation.<\/jats:p>","DOI":"10.3390\/axioms11100494","type":"journal-article","created":{"date-parts":[[2022,9,26]],"date-time":"2022-09-26T01:14:28Z","timestamp":1664154868000},"page":"494","source":"Crossref","is-referenced-by-count":10,"title":["Coefficient Inequalities for Multivalent Janowski Type q-Starlike Functions Involving Certain Conic Domains"],"prefix":"10.3390","volume":"11","author":[{"given":"Muhammad Sabil","family":"Ur Rehman","sequence":"first","affiliation":[{"name":"Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8805-6452","authenticated-orcid":false,"given":"Qazi Zahoor","family":"Ahmad","sequence":"additional","affiliation":[{"name":"Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5287-4656","authenticated-orcid":false,"given":"Isra","family":"Al-shbeil","sequence":"additional","affiliation":[{"name":"Department of Mathematics, The University of Jordan, Amman 11942, Jordan"}]},{"given":"Sarfraz","family":"Ahmad","sequence":"additional","affiliation":[{"name":"Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan"}]},{"given":"Ajmal","family":"Khan","sequence":"additional","affiliation":[{"name":"Department of Mathematics, Abbottabad University of Science and Technology, Abbottabad 22010, Pakistan"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2427-2003","authenticated-orcid":false,"given":"Bilal","family":"Khan","sequence":"additional","affiliation":[{"name":"School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2909-0970","authenticated-orcid":false,"given":"Jianhua","family":"Gong","sequence":"additional","affiliation":[{"name":"Department of Mathematical Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates"}]}],"member":"1968","published-online":{"date-parts":[[2022,9,23]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"958563","DOI":"10.1155\/2014\/958563","article-title":"Some subordination results on q-analogue of Ruscheweyh differential operator","volume":"2014","author":"Aldweby","year":"2014","journal-title":"Abstr. Appl. Anal."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1186\/s13660-020-02348-2","article-title":"Criteria for a certain class of the Carath\u00e9odory functions and their applications","volume":"2020","author":"Cho","year":"2020","journal-title":"J. Inequal. Appl."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"297","DOI":"10.4064\/ap-28-3-297-326","article-title":"Some extremal problems for certain families of analytic functions","volume":"28","author":"Janowski","year":"1973","journal-title":"Ann. Polon. Math."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/S0377-0427(99)00018-7","article-title":"Conic regions and k-uniform convexity","volume":"105","author":"Kanas","year":"1999","journal-title":"J. Comput. Appl. Math."},{"key":"ref_5","first-page":"647","article-title":"Conic domains and starlike functions","volume":"45","author":"Kanas","year":"2000","journal-title":"Rev. Roumaine Math. Pures Appl."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1080\/10652460008819249","article-title":"Linear operators associated with k-uniformly convex functions","volume":"9","author":"Kanas","year":"2000","journal-title":"Integral Transform. Spec. Funct."},{"key":"ref_7","first-page":"149","article-title":"Coefficient estimates in subclasses of the Carath\u00e9odary class related to conic domains","volume":"74","author":"Kanas","year":"2005","journal-title":"Acta Math. Univ. Comen."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1183","DOI":"10.2478\/s12175-014-0268-9","article-title":"Some class of analytic functions related to conic domains","volume":"64","author":"Kanas","year":"2014","journal-title":"Math. Slovaca"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"260","DOI":"10.3934\/Math.2017.2.260","article-title":"Some Convolution properties of multivalent analytic functions","volume":"2","author":"Khan","year":"2017","journal-title":"AIMS Math."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2959","DOI":"10.1155\/S0161171204402014","article-title":"Classes of uniformly starlike and convex functions","volume":"55","author":"Shams","year":"2004","journal-title":"Int. J. Math. Math. Sci."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"2209","DOI":"10.1016\/j.camwa.2011.07.006","article-title":"On coefficient inequalities of functions associated with conic domains","volume":"62","author":"Noor","year":"2011","journal-title":"Comput. Math. Appl."},{"key":"ref_12","first-page":"193","article-title":"On q-definite integrals","volume":"41","author":"Jackson","year":"1910","journal-title":"Quart. J. Pure Appl. Math."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"305","DOI":"10.2307\/2370183","article-title":"q-difference equations","volume":"32","author":"Jackson","year":"1910","journal-title":"Am. J. Math."},{"key":"ref_14","first-page":"77","article-title":"A generalization of starlike functions","volume":"14","author":"Ismail","year":"1990","journal-title":"Complex Var. Theory Appl."},{"key":"ref_15","unstructured":"Srivastava, H.M., and Owa, S. (1989). Univalent Functions, Fractional Calculus, and Associated Generalized Hypergeometric Functions, Ellis Horwood Limited."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"489218","DOI":"10.1155\/2015\/489218","article-title":"Certain properties of q-hypergeometric functions","volume":"2015","author":"Ezeafulukwe","year":"2015","journal-title":"Int. J. Math. Math. Sci."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1450046","DOI":"10.1142\/S1793557114500466","article-title":"Partial sum of generalized class of meromorphically univalent functions defined by q-analogue of Liu-Srivastava operator","volume":"7","author":"Huda","year":"2014","journal-title":"Asian-Eur. J. Math."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1007\/s40995-019-00815-0","article-title":"Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis","volume":"44","author":"Srivastava","year":"2020","journal-title":"Iran. J. Sci. Technol. Trans. A Sci."},{"key":"ref_19","first-page":"8492072","article-title":"Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative","volume":"2018","author":"Mahmood","year":"2018","journal-title":"J. Funct. Spaces"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Mahmood, S., Srivastava, H.M., Khan, N., Ahmad, Q.Z., Khan, B., and Ali, I. (2019). Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry, 11.","DOI":"10.3390\/sym11030347"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Srivastava, H.M., Ahmad, Q.Z., Khan, N., Khan, N., and Khan, B. (2019). Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics, 7.","DOI":"10.3390\/math7020181"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"407","DOI":"10.14492\/hokmj\/1562810517","article-title":"Coefficient inequalities for q-starlike functions associated with the Janowski functions","volume":"48","author":"Srivastava","year":"2019","journal-title":"Hokkaido Math. J."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"8162182","DOI":"10.1155\/2022\/8162182","article-title":"Applications of q-Derivative Operator to the Subclass of Bi-Univalent Functions Involving q-Chebyshev Polynomials","volume":"2022","author":"Khan","year":"2022","journal-title":"J. Math."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Srivastava, H.M., Tahir, M., Khan, B., Ahmad, Q.Z., and Khan, N. (2019). Some general classes of q-starlike functions associated with the Janowski functions. Symmetry, 11.","DOI":"10.3390\/sym11020292"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"93","DOI":"10.4064\/ap113-1-6","article-title":"On a generalization of close-to-convex functions","volume":"113","author":"Sahoo","year":"2015","journal-title":"Ann. Polon. Math."},{"key":"ref_26","first-page":"122","article-title":"Coefficient inequality for q-starlike functions","volume":"276","year":"2016","journal-title":"Appl. Math. Comput."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1110","DOI":"10.3934\/math.2021067","article-title":"Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions","volume":"6","author":"Rehman","year":"2021","journal-title":"AIMS Math."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1090\/S0002-9939-1975-0369678-0","article-title":"Univalent functions with negative coefficients","volume":"51","author":"Silverman","year":"1975","journal-title":"Proc. Am. Math. Soc."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1090\/S0002-9939-1969-0232926-9","article-title":"A coefficient inequality for certain classes of analytic functions","volume":"20","author":"Keogh","year":"1969","journal-title":"Proc. Am. Math. Soc."},{"key":"ref_30","unstructured":"Li, Z., Ren, F., and Zhang, L.Y.S. (1992, January 19\u201323). A unified treatment of some special classes of univalent functions. Proceedings of the Conference on Complex Analysis, Tianjin, China."}],"container-title":["Axioms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2075-1680\/11\/10\/494\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T06:27:18Z","timestamp":1722925638000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2075-1680\/11\/10\/494"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,23]]},"references-count":30,"journal-issue":{"issue":"10","published-online":{"date-parts":[[2022,10]]}},"alternative-id":["axioms11100494"],"URL":"http:\/\/dx.doi.org\/10.3390\/axioms11100494","relation":{},"ISSN":["2075-1680"],"issn-type":[{"type":"electronic","value":"2075-1680"}],"subject":[],"published":{"date-parts":[[2022,9,23]]}}}