{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,2]],"date-time":"2024-03-02T00:56:52Z","timestamp":1709341012899},"reference-count":22,"publisher":"World Scientific and Engineering Academy and Society (WSEAS)","license":[{"start":{"date-parts":[[2022,9,20]],"date-time":"2022-09-20T00:00:00Z","timestamp":1663632000000},"content-version":"am","delay-in-days":0,"URL":"https:\/\/wseas.com\/journals\/mathematics\/2022\/b565106-048(2022).pdf"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,9,20]]},"abstract":"Let\u2019s consider a primitive strongly regular graph G and it\u2019s adjacency matrix A. Next we consider the Euclidean subalgebra A of the Euclidean Jordan algebra of real symmetric matrices of order n, with the Jordan product and with the inner product of two matrices as being the usual trace of two matrices. Finally, we make a spectral analysis of an Hadamard series of an element of A to establish some new conditions over the spectrum and the parameters of the primitive strongly regular graph G.<\/jats:p>","DOI":"10.37394\/23206.2022.21.77","type":"journal-article","created":{"date-parts":[[2022,9,20]],"date-time":"2022-09-20T09:37:12Z","timestamp":1663666632000},"page":"659-665","source":"Crossref","is-referenced-by-count":2,"title":["Euclidean Jordan Algebras and Some New Inequalities Over the Parameters of a Strongly Regular Graph"],"prefix":"10.37394","volume":"21","author":[{"given":"Luis","family":"Vieira","sequence":"first","affiliation":[{"name":"Faculty of Engineering of University of Porto Department of Civil Engineering Street D Roberto Frias, 4200 46 Porto PORTUGAL"}]}],"member":"23555","published-online":{"date-parts":[[2022,9,20]]},"reference":[{"key":"ref0","doi-asserted-by":"crossref","unstructured":"J. Faraut and A. Koranyi, \u00b4 Analysis on Symmetric Cones, Oxford Science Publications, 1994.","DOI":"10.1093\/oso\/9780198534778.001.0001"},{"key":"ref1","doi-asserted-by":"publisher","unstructured":"H. Massan and E. Neher, Estimation and testing for lattice conditional independence models on Euclidean Jordan algebras, Annals of Statistics, Vol. 1, 1998, pp. 1051-1081.","DOI":"10.1214\/aos\/1024691088"},{"key":"ref2","doi-asserted-by":"publisher","unstructured":"F. Alizadeh and S.H. Schmieta, Symmetric Cones, Potential Reduction Methods and Word by Word Extensions, in Handbook of Semidefinite Programming, Theory, Algorithms and Applications ,H. Wolkowicz, R. Saigal, and L. Vandenberghe, Eds. Massuchetts; Kluwer Academic Publishers, 2000, pp.195-233.","DOI":"10.1007\/978-1-4615-4381-7_8"},{"key":"ref3","doi-asserted-by":"publisher","unstructured":"L. Faybusovich, A Jordan algebraic approach to potential reduction algorithms, Vol.239, 2002, pp. 117-129.","DOI":"10.1007\/s002090100286"},{"key":"ref4","doi-asserted-by":"publisher","unstructured":"M. Orlitzky, Rank computation in Euclidean Jordan algebras, Journal of Symbolic Computation, Vol.113, 2022, pp.181-192. -7pt","DOI":"10.1016\/j.jsc.2022.04.003"},{"key":"ref5","doi-asserted-by":"publisher","unstructured":"A. Seeger, Condition number minimization in Euclidean Jordan algebras, Siam Journal on Optimization, Vol.32, N.2, 2022, pp. 635-658.","DOI":"10.1137\/21m1400705"},{"key":"ref6","doi-asserted-by":"publisher","unstructured":"Y. Xia and F. Alizadeh, The Q Method for Symmetric Cone Programming, Journal of Optimization Theory and Applications, Vol. 149, 2011, pp.102-137.","DOI":"10.1007\/s10957-010-9777-z"},{"key":"ref7","doi-asserted-by":"publisher","unstructured":"L. faybusovich, Linear systems in Jordan algebras and primal-dual interior-point algorithms, Journal of Computational and Applied Mathematics, Vol. 86, 1997, pp.149-175.","DOI":"10.1016\/s0377-0427(97)00153-2"},{"key":"ref8","doi-asserted-by":"crossref","unstructured":"L. Faybusovich, Euclidean Jordan algebras and Interior-point Algorithms, Positivity, Vol. 1, 1997, pp.331-357.","DOI":"10.1023\/A:1009701824047"},{"key":"ref9","doi-asserted-by":"publisher","unstructured":"M. S. Gowda, J. Tao and M. Moldovan, Some inertia Theorems in Euclidean Jordan algebras, Linear algebra and its applications, vol. 430, 2009, pp. 1992-2011.","DOI":"10.1016\/j.laa.2008.11.015"},{"key":"ref10","doi-asserted-by":"publisher","unstructured":"D. M. Cardoso and L. A. Vieira, On the optimal parameter of a self-concordant barrier over a symmetric cone, European Journal of Operational research, Vol. 169, 2006, pp.1148-1157.","DOI":"10.1016\/j.ejor.2004.11.027"},{"key":"ref11","unstructured":"V. M. Mano and L. A. Vieira, Bounds on the Generalized Krein parameters of an association scheme, The International International Conference on Pure Mathematics, Applied Mathematics Conference Proceedings, 2015."},{"key":"ref12","doi-asserted-by":"publisher","unstructured":"L. A. Vieira and V. M Mano, Generalized Krein parameters of a strongly regular graph, Applied Mathematics, Vol. 6, 2015, pp.37-45.","DOI":"10.4236\/am.2015.61005"},{"key":"ref13","doi-asserted-by":"publisher","unstructured":"V. M. Mano, E. A. Martins and L. A. Vieira, On generalized binomial series and strongly regular graphs, Proyecciones Journal of Mathematics, Vol. 4, 2013, pp.393-408.","DOI":"10.4067\/s0716-09172013000400007"},{"key":"ref14","unstructured":"V. M. Mano and L. A. Vieira, Admissibility conditions and asymptotic behavior of strongly regular graphs, International Journal of Mathematical Models and Methods in Applied Sciences Methods, Vol. 6, 2011, pp. 1027-1033."},{"key":"ref15","unstructured":"V. M. Mano and L. A. Vieira, Alternating Schur Series and Necessary Conditions for the Existence of Strongly Regular Graphs, International Journal of Mathematical Models and Methods in Applied Sciences Methods, Vol. 8, 2014, pp. 256-261."},{"key":"ref16","doi-asserted-by":"publisher","unstructured":"L. A. Vieira, Generalized inequalities associated to the regularity of a strongly regular graph, Vol. 19, No.3, 2019, pp. 673-680.","DOI":"10.3233\/jcm-193699"},{"key":"ref17","doi-asserted-by":"publisher","unstructured":"L. A: Vieira, Euclidean Jordan algebras, strongly regular graphs and Cauchy Schwarz inequalities, Appl. Math. , Vol.13, N.3, 2019, pp. 437-444.","DOI":"10.18576\/amis\/130316"},{"key":"ref18","unstructured":"K. McCrimmon, A taste on Jordan Algebras, Springer Verlag, 2000."},{"key":"ref19","doi-asserted-by":"crossref","unstructured":"J. D. Malley, Statistical Applications of Jordan Algebras, Springer Verlag, 1994.","DOI":"10.1007\/978-1-4612-2678-9"},{"key":"ref20","doi-asserted-by":"publisher","unstructured":"R. C. Bose, Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math., Vol. 13, 1963, pp.384-419.","DOI":"10.2140\/pjm.1963.13.389"},{"key":"ref21","doi-asserted-by":"crossref","unstructured":"C. Godsil and G. Royle, Algebraic Graph Theory, Springer Verlag, 2001.","DOI":"10.1007\/978-1-4613-0163-9"}],"container-title":["WSEAS TRANSACTIONS ON MATHEMATICS"],"original-title":[],"language":"en","deposited":{"date-parts":[[2023,11,27]],"date-time":"2023-11-27T06:55:30Z","timestamp":1701068130000},"score":1,"resource":{"primary":{"URL":"https:\/\/wseas.com\/journals\/mathematics\/2022\/b565106-048(2022).pdf"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,20]]},"references-count":22,"URL":"http:\/\/dx.doi.org\/10.37394\/23206.2022.21.77","archive":["Portico","Portico"],"relation":{},"ISSN":["2224-2880","1109-2769"],"issn-type":[{"value":"2224-2880","type":"electronic"},{"value":"1109-2769","type":"print"}],"subject":[],"published":{"date-parts":[[2022,9,20]]}}}